Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fluorodeoxyglucose-positron emission tomography (F-FDG-PET) is a powerful tool for cancer detection, staging, and follow-up. However, F-FDG-PET imaging has high rates of false positives, as it cannot distinguish between tumor and inflammation regions that both feature increased glucose metabolic activity. In the present study, we engineered liposomes coated with glucose and the chelator dodecane tetraacetic acid (DOTA) complexed with copper, to serve as a diagnostic technology for differentiating between cancer and inflammation. This liposome technology is based on FDA-approved materials and enables complexation with metal cations and radionuclides. We found that these liposomes were preferentially uptaken by cancer cell lines with high metabolic activity, mediated via glucose transporter-1. In vivo, these liposomes were avidly uptaken by tumors, as compared to liposomes without glucose coating. Moreover, in a combined tumor-inflammation mouse model, these liposomes accumulated in the tumor tissue and not in the inflammation region. Thus, this technology shows high specificity for tumors while evading inflammation and has potential for rapid translation to the clinic and integration with existing PET imaging systems, for effective reduction of false positives in cancer diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.0c08530 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!