4D-Printable Liquid Metal-Liquid Crystal Elastomer Composites.

ACS Appl Mater Interfaces

Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States.

Published: March 2021

Soft actuators that undergo programmable shape change in response to a stimulus are enabling components of future soft robots and other soft machines. Strategies to power these actuators often require the incorporation of rigid, electrically conductive materials into the soft actuator, thus limiting the compliance and shape change of the material. In this study, we develop a 4D-printable composite composed of liquid crystal elastomer (LCE) matrix with dispersed droplets of eutectic gallium indium alloy (EGaIn). Using deformable EGaIn droplets in place of rigid conductive fillers preserves the compliance and shape-morphing properties of the LCE. The process enables 4D-printed LCE actuators capable of photothermal and electrothermal actuation. At low liquid metal (LM) concentrations (71 wt %), the composite actuator exhibits a photothermal response upon irradiation of near-IR light. Printed actuators with a twisted nematic configuration are capable of bending angles of 150° at 800 mW cm. At higher LM concentrations (88 wt %), the embedded LM droplets can form percolating networks that conduct electricity and enable electrical Joule heating of the LCE. Actuation strain ranging from 5 to 12% is controlled by the amount of electrical power that is delivered to the composite. We also introduce a method for multimaterial printing of monolithic structures where the LM filler loading is spatially varied. These multifunctional materials exhibit innate responsivity where the actuator behaves as an electrical switch and can report one of two states (on/off). These multiresponsive, 4D-printable composites enable multifunctional, mechanically active structures that can be powered with IR light or low DC voltages.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c19051DOI Listing

Publication Analysis

Top Keywords

crystal elastomer
8
shape change
8
4d-printable liquid
4
liquid metal-liquid
4
metal-liquid crystal
4
elastomer composites
4
soft
4
composites soft
4
actuators
4
soft actuators
4

Similar Publications

Magneto-Photochemically Responsive Liquid Crystal Elastomer for Underwater Actuation.

ACS Appl Mater Interfaces

January 2025

Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101 Tampere, Finland.

The quest for small-scale, remotely controlled soft robots has led to the exploration of magnetic and optical fields for inducing shape morphing in soft materials. Magnetic stimulus excels when navigation in confined or optically opaque environments is required. Optical stimulus, in turn, boasts superior spatial precision and individual control over multiple objects.

View Article and Find Full Text PDF

Non-close-packed crystalline arrays of colloidal particles in an elastic matrix exhibit mechanochromism. However, small interparticle distances often limit the range of reversible color shifts and reduce reflectivity during a blueshift. A straightforward, reproducible strategy using matrix swelling to increase interparticle distance and improve mechanochromic performance is presented.

View Article and Find Full Text PDF

In recent years, there have been many studies focused on improving the performance of active materials; however, applying these materials to active machines still presents significant challenges. In this study, we introduce a light-powered self-translation system for an asymmetric friction slider using a liquid crystal elastomer (LCE) string oscillator. The self-translation system was composed of a hollow slide, two LCE fibers, and a mass ball.

View Article and Find Full Text PDF

Properties of New Partially Crystallized Lithium Disilicate CAD-CAM Materials.

Oper Dent

January 2025

*Kraig S. Vandewalle, DDS, MS, Col (ret), USAF, DC, Air Force Consultant in Dental Research Advanced Education in General Dentistry Residency, AF Postgraduate Dental School, Joint Base San Antonio - Lackland, TX, USA; Uniformed Services University of the Health Sciences, Bethesda, MD, USA.

Objective: The purpose of this study was to compare the optical, mechanical, and biological properties of two new, inexpensive lithium disilicate (LS2) materials (Lodden (LOD), LD Medical Technology; and BeautyZir (BZ), BeautyZir Technology) to a clinically established LS2 material (IPS e.max CAD (EMAX), Ivoclar Vivadent).

Methods And Materials: The optical properties of the translucency parameter (TP) and opalescence parameter (OP) were obtained with a dental spectrophotometer.

View Article and Find Full Text PDF

The locomotion of various organisms relies on the alternated elongation-contraction of their muscles or bodies. Such biomimicry can offer a promising approach to developing soft robotic devices with improved mobility and efficiency. Most strategies to mimic such motions rely on reversible size modifications of some materials upon exposure to external stimuli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!