The cell membrane, which is lipid-rich, is not only a simple mechanical barrier but also an important and complex component of the cell. It also communicates with the external environment. Sphingomyelin is an important class of phospholipids in the membrane that performs many functions. Interest in sphingomyelin-based liposomes, which are a critical component of cell membranes, have become the focus of intense study in recent years. Through additional research, the function of sphingomyelin and its derivatives in diseases can be gradually elucidated. Sphingomyelin consists of ceramide and its derivatives including ceramide-1-phosphate glucosylceramide and sphingosine-1-phosphate. The metabolism of glucosylceramide is regulated by glucosylceramide synthase (EC: 2.4.1.80) which is the key enzyme in the glycosylation of ceramide. The activity of glucosylceramide synthase directly affects the level of glucosylceramide in cells which in turn affects the function of cells and may eventually lead to diseases. Recently, the relationship between glucosylceramide and its metabolic enzymes, with diseases has become a relatively new area of study. The purpose of this paper is to address the relationship between glucosylceramide, glucosylceramide synthase, and their possible association with liver diseases at the theoretical level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.18388/abp.2020_5478 | DOI Listing |
Int J Mol Sci
December 2024
Lipid Pathobiochemistry Group, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.
Hepatocellular carcinoma () is one of the leading causes of cancer deaths due to its late diagnosis and restricted therapeutic options. Therefore, the search for appropriate alternatives to commonly applied therapies remains an area of high clinical need. Here we investigated the therapeutic potential of the glucosylceramide synthase (GCS) inhibitor Genz-123346 and the cationic amphiphilic drug aripiprazole on the inhibition of Huh7 and Hepa 1-6 hepatocellular cancer cell and tumor microsphere growth.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan Province, People's Republic of China, Zhengzhou 450046, China. Electronic address:
Glucosylceramide synthase (UGCG) is a key enzyme that catalyzes the initial glycosylation step in the biosynthesis of glycosphingolipids (GSLs) derived from glucosylceramide. UGCG is closely associated with various cellular processes, including the cell cycle, angiogenesis, multidrug resistance, and pathogen invasion. In this study, a short hairpin RNA (shRNA) library designed to target key genes involved in the sphingolipid metabolic pathway was utilized to elucidate their roles in Pseudorabies Virus (PRV).
View Article and Find Full Text PDFPest Manag Sci
December 2024
Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Institute of Pesticide Science, Northwest A&F University, Yangling, P. R. China.
Background: The potential application of vanillin as a fungicide has garnered significant attention in the agricultural product market and food industries. Consequently, a novel series of vanillin derivatives containing thiazole and hydrazone fragments were strategically designed, synthesized, and evaluated for their antifungal activity against six representative plant phytopathogenic fungi.
Results: In the in vitro antifungal assay, some title vanillin derivatives showed good antifungal activity against Botrytis cinerea, Fusarium solani, and Magnaporthe grisea.
J Pharmacol Sci
December 2024
Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan. Electronic address:
Biochem Biophys Res Commun
November 2024
Core Research Facilities, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan.
Plasmacytoid dendritic cells (pDCs) are a distinct subset of DCs involved in immune regulation and antiviral immune responses. Recent studies have elucidated the metabolic profile of pDCs and reported that perturbations in amino acid metabolism can modulate their immune functions. Glycolipid metabolism is suggested to be highly active in pDCs; however, its significance remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!