Stimulation of mono (ADP-ribosyl)ation by reduced extracellular calcium levels in human fibroblasts.

J Cell Physiol

Samuel Roberts Noble Foundation, Inc., Ardmore, Oklahoma 73402.

Published: January 1988

Lowering extracellular calcium in cultures of human diploid fibroblast-like cells caused a rapid depletion of NAD pools. This loss of NAD was reversed by restoring extracellular Ca2+ and was inhibited by 3-aminobenzamide, an inhibitor of ADP-ribosyl transfer reactions. The concentrations of 3-aminobenzamide needed to inhibit the loss of NAD were consistent with those required to inhibit cellular mono(ADP-ribosyl) rather than poly(ADP-ribosyl) reactions. Calcium depletion did not inhibit the biosynthesis of NAD. These results suggest that mono(ADP-ribosyl)ation is involved in the regulation of cellular Ca2+ levels.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.1041340121DOI Listing

Publication Analysis

Top Keywords

extracellular calcium
8
loss nad
8
stimulation mono
4
mono adp-ribosylation
4
adp-ribosylation reduced
4
reduced extracellular
4
calcium levels
4
levels human
4
human fibroblasts
4
fibroblasts lowering
4

Similar Publications

Bacterial activation level determines Cd(II) immobilization efficiency by calcium-phosphate minerals in soil.

J Hazard Mater

January 2025

National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China. Electronic address:

Soil mineral properties significantly influence the mobility of Cd(II) within the soil matrix. However, the limited understanding of how microbial metabolism affects mineral structure at the microscale poses challenges for in situ remediation. Here, we designed a model calcium-phosphate system in a urea-rich environment to explore the impact of different microbial activation levels on Cd(II) fixation at mineral interfaces.

View Article and Find Full Text PDF

Objective: Loss of function of the phospholipid scramblase (PLS) TMEM16F results in Scott Syndrome, a hereditary bleeding disorder generally attributed to intrinsic platelet dysfunction. The role of TMEM16F in endothelial cells, however, is not well understood. We sought to test the hypothesis that endothelial TMEM16F contributes to hemostasis by measuring bleeding time and venous clotting in endothelial-specific knockout (ECKO) mice.

View Article and Find Full Text PDF

A review of the roles of exosomes in salivary gland diseases with an emphasis on primary Sjögren's syndrome.

J Dent Sci

January 2025

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Salivary gland diseases encompass a broad range of conditions, including autoimmune, inflammatory, obstructive, and neoplastic disorders, significantly impacting oral health and overall well-being. Recent research has highlighted the crucial role of exosomes, small extracellular vesicles, in these diseases. Exosomes mediate intercellular communication by transferring bioactive molecules such as proteins, microRNAs, and lipids, positioning them as potential diagnostic biomarkers and therapeutic agents.

View Article and Find Full Text PDF

Targeted organelle therapy is a promising therapeutic method for significantly regulating the tumor microenvironment, yet it often lacks effective strategies for leveraging synergistic enhancement effect. Engineered small extracellular vesicles (sEVs) are expected to address this challenge due to their notable advantages in drug delivery, extended circulation time, and intercellular information transmission. Herein, we prepare sEVs with pH and photothermal dual-responsiveness, which are encapsulated with hydrogels for a quadruple-efficient synergistic therapy.

View Article and Find Full Text PDF

Hydration Effects Driving Network Remodeling in Hydrogels during Cyclic Loading.

ACS Macro Lett

January 2025

Materials Science and Engineering Department, Technion-Israel Institute of Technology, Haifa 3200003, Israel.

In complex networks and fluids such as the extracellular matrix, the mechanical properties are substantially affected by the movement of polymers both part of and entrapped in the network. As many cells are sensitive to the mechanical remodeling of their surroundings, it is important to appreciate how entrapped polymers may inhibit or facilitate remodeling in the network. Here, we explore a molecular-level understanding of network remodeling in a complex hydrogel environment through successive compressive loading and the role that noninteracting polymers may play in a dynamic network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!