We report the synthesis, structure, and redox behavior of the cation-ordered tetragonal ScVO defect fluorite superstructure previously thought to be the oxygen precise ABO phase. Four synthesis routes in oxidative, reductive, and inert atmospheres are demonstrated. and powder X-ray and neutron diffraction analyses reveal vanadium disproportionation reactions. The structure-reaction map illustrates the oxygen-dependent competition between the tetragonal cation and anion ordered ScVO and the disordered cubic ScVO (δ < δ' ≤ 0.5) phases as a function of temperature. Oxidation states and oxide stoichiometries were determined with DC magnetometry and XANES experiments. The tetragonal cation ordered ScVO phase with δ = -0.15(2) for as-synthesized samples reveals vanadium charge ordering. V and V cations occupy octahedral sites, whereas V predominantly occupies a tetrahedral site. The paramagnetic {V} clusters are isolated by diamagnetic V cations. At temperatures below 500 °C the {V} clusters can be topotactically fine-tuned with varying V/V ratios. Above 600 °C the tetragonal structure oxidizes to the cubic ScVO fluorite phase-its disordered competitor. The investigation of the cation- and anion-ordered Sc-V-O phases, their formation, and thermal stability is important for the design of low-temperature solid state oxide ion conductors and vacancy structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.0c02992 | DOI Listing |
J Phys Condens Matter
December 2024
Departmet of Physics(MMV), Banaras Hindu University, Varanasi, Varanasi, Uttar Pradesh, 221005, INDIA.
We report a detailed experimental study of the structural, magnetic and electrical properties of La and Ru doped (Sr1-x Lax)2Ir1-xRuxO4 (x= 0.05, 0.15).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323.
Ferroelectric hafnia exhibits promising robust polarization and silicon compatibility for ferroelectric devices. Unfortunately, it suffers from difficult polarization switching. Methods to enable easier polarization switching are needed, and the underlying reason for this switching difficulty is not understood.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India.
In this work, Terminalia chebula leaf extract was used to synthesize CuO-CoO nanoparticles, which were then embedded in a rice straw biochar. This new biochar-based nano-catalyst is used to photocatalytically degrade a variety of dyes (Eosin Y, Trypan Blue, Crystal Violet, Methylene Blue, Brilliant Green), as well as a binary mixture of Eosin Y and Trypan Blue dyes. It is also used for the catalytic reduction of nitro compounds (4-NP, 3-NP, and Picric acid).
View Article and Find Full Text PDFNat Commun
December 2024
School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
Crystal symmetry, which governs the local atomic coordination and bonding environment, is one of the paramount constituents that intrinsically dictate materials' functionalities. However, engineering crystal symmetry is not straightforward due to the isotropically strong covalent/ionic bonds in crystals. Layered two-dimensional materials offer an ideal platform for crystal engineering because of the ease of interlayer symmetry operations.
View Article and Find Full Text PDFEnviron Technol
December 2024
Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes, France.
A natural water sampled after a sand filtration step and spiked with four organic micropollutants (metolachlor ESA, metolachlor NOA, desethylatrazine and metaldehyde) was treated by a loose nanofiltration membrane. The Steric, Electric, and Dielectric model (SEDE model) was then used to predict the separation performance of the membrane towards the various ions and micropollutants in the water matrix in order to study the transport mechanism of ions and micropollutants through the membrane. The SEDE model was found to satisfactorily predict the rejection sequences of inorganic anions and cations, as well as neutral (desethylatrazine and metaldehyde) and charged (metolachlor ESA and metolachlor NOA) micropollutants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!