Synthesis and Characterization of a Diazirine-Based Photolabel of the Nonanesthetic Fropofol.

ACS Chem Neurosci

Perelman School of Medicine, Department of Anesthesiology and Critical Care, University of Pennsylvania, John Morgan Building, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States.

Published: January 2021

The mechanisms of general anesthetics have been debated in the literature for many years and continue to be of great interest. As anesthetic molecules are notoriously difficult to study due to their low binding affinities and multitude of binding partners, it is advantageous to have additional tools to study these interactions. Fropofol is a hydroxyl to fluorine-substituted propofol analogue that is able to antagonize the actions of propofol. Understanding fropofol's ability to antagonize propofol would facilitate further characterization of the binding interactions of propofol that may contribute to its anesthetic actions. However, the study of fropofol's molecular interactions has many of the same difficulties as its parent compound. Here, we present the synthesis and characterization of -azi-fropofol (AziF) as a suitable photoaffinity label (PAL) of fropofol that can be used to covalently label proteins of interest to characterize fropofol's binding interactions and their contribution to general anesthetic antagonism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7948515PMC
http://dx.doi.org/10.1021/acschemneuro.0c00667DOI Listing

Publication Analysis

Top Keywords

synthesis characterization
8
binding interactions
8
characterization diazirine-based
4
diazirine-based photolabel
4
photolabel nonanesthetic
4
nonanesthetic fropofol
4
fropofol mechanisms
4
mechanisms general
4
general anesthetics
4
anesthetics debated
4

Similar Publications

Enzymatic asymmetric synthesis of l-phenylglycine by amino acid dehydrogenases has potential for industrial applications; however, this is hindered by their low catalytic efficiency toward high-concentration substrates. We identified and characterized a novel leucine dehydrogenase (LeuDH) with a high catalytic efficiency for benzoylformic acid via directed metagenomic approaches. Further, we obtained a triple-point mutant LeuDH-EER (D332E/G333E/L334R) with improved stability and catalytic efficiency through the rational design of distal loop 13.

View Article and Find Full Text PDF

Exploring ferroptosis and miRNAs: implications for cancer modulation and therapy.

Mol Cell Biochem

January 2025

Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.

Ferroptosis is a novel, iron-dependent form of non-apoptotic cell death characterized by the accumulation of lipid reactive oxygen species (ROS) and mitochondrial shrinkage. It is closely associated with the onset and progression of various diseases, especially cancer, at all stages, making it a key focus of research for developing therapeutic strategies. Numerous studies have explored the role of microRNAs (miRNAs) in regulating ferroptosis by modulating the expression of critical genes involved in iron metabolism and lipid peroxidation.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive decline. Despite extensive research, therapeutic options remain limited. Varenicline, an αβ nicotinic acetylcholine receptor agonist, shows promise in enhancing cognitive function.

View Article and Find Full Text PDF

Characterization of a novel D-sorbitol dehydrogenase from Faunimonas pinastri A52C2.

Appl Microbiol Biotechnol

January 2025

Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.

The enzyme D-sorbitol dehydrogenase (SLDH) facilitates the conversion of D-sorbitol to L-sorbose. While current knowledge of this enzyme class predominantly centers on Gluconobacter oxydans, the catalytic properties of enzymes from alternative sources, particularly their substrate specificity and coenzyme dependency, remain ambiguous. In this investigation, we conducted BLASTp analysis and screened out a novel SLDH (Fpsldh) from Faunimonas pinastri A52C2.

View Article and Find Full Text PDF

Astaxanthin (ASX), "king of carotenoids", is a xanthophyll carotenoid that is characterized by a distinct reddish-orange hue, procured from diverse sources including plants, microalgae, fungi, yeast, and lichens. It exhibits potent antioxidant and anti-ageing properties and has been demonstrated to mitigate ultraviolet-induced cellular and DNA damage, enhance immune system function, and improve cardiovascular diseases. Despite its broad utilization across nutraceutical, cosmetic, aquaculture, and pharmaceutical sectors, the large-scale production and application of ASX are constrained by the limited availability of natural sources, low production yields and stringent production requirements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!