The degeneration of intervertebral disc (IVD) tissue, initiated following the disappearance of notochordal cells (NCs), is characterized by the decreased number of nucleus pulposus (NP) cells (NPCs) and extracellular matrix. Transplanting proper cells into the IVD may sustain cell numbers, resulting in the synthesis of new matrix; this represents a minimally invasive regenerative therapy. However, the lack of cells with a correct phenotype severely hampers the development of regenerative therapy. The present study aimed to investigate whether porcine NC‑rich NP tissue stimulates bone marrow‑derived mesenchymal stem cell (BM‑MSC) differentiation toward NC‑like cells, which possess promising regenerative ability, for the treatment of disc degeneration diseases. BM‑MSCs were successfully isolated from porcine femurs and tibiae, which expressed CD90 and CD105 markers and did not express CD45. Differentiation induction experiments revealed that the isolated cells had osteogenic and adipogenic differentiation potential. When co‑cultured with NC‑rich NP tissue, the BM‑MSCs successfully differentiated into NC‑like cells. Cell morphological analysis revealed that the cells exhibited an altered morphology, from a shuttle‑like to a circular one, and the expression of NC marker genes, including brachyury, keratin‑8, and keratin‑18, was enhanced, and the cells exhibited the ability to generate aggrecan and collagen II. Taken together, the findings of the present study demonstrated that the primarily isolated and cultured BM‑MSCs may be stimulated to differentiate into NC‑like cells by porcine NC‑rich NP explants, potentially providing an ideal cell source for regenerative therapies for disc degeneration diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7789091 | PMC |
http://dx.doi.org/10.3892/mmr.2020.11801 | DOI Listing |
J Cell Sci
March 2025
Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
Mitochondria perform diverse functions, such as producing ATP through oxidative phosphorylation, synthesizing macromolecule precursors, maintaining redox balance, and many others. Given this diversity of functions, we and others have hypothesized that cells maintain specialized subpopulations of mitochondria. To begin addressing this hypothesis, we developed a new dual-purification system to isolate subpopulations of mitochondria for chemical and biochemical analyses.
View Article and Find Full Text PDFBiol Open
March 2025
Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA.
During embryonic development vascular endothelial and hematopoietic cells are thought to originate from a common precursor, the hemangioblast. An evolutionarily conserved ETS transcription factor FLI1 has been previously implicated in the hemangioblast formation and hematopoietic and vascular development. However, its role in regulating hemangioblast transition into hematovascular lineages is still incompletely understood.
View Article and Find Full Text PDFFASEB J
March 2025
Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.
Glaucoma, a leading cause of irreversible blindness, is characterized by the progressive loss of retinal ganglion cells (RGCs) and optic nerve damage, often associated with elevated intraocular pressure (IOP). Retinoid X receptors (RXRs) are ligand-activated transcription factors crucial for neuroprotection, as they regulate gene expression to promote neuronal survival via several biochemical networks and reduce neuroinflammation. This study investigated the therapeutic potential of 9-cis-13,14-dihydroretinoic acid (9CDHRA), an endogenous retinoid RXR agonist, in mitigating RGC degeneration in a high-IOP-induced experimental model of glaucoma.
View Article and Find Full Text PDFFASEB J
March 2025
Department of Oncology, The Central Hospital of Yongzhou, Yongzhou, Hunan, China.
The ribophorin family, including RPN1, has been associated with tumor progression, but its specific role in pan-cancer dynamics remains unclear. Using data from TCGA, GTEx, and Ualcan databases, we investigated the relationship of RPN1 with prognosis, genomic alterations, and epigenetic modifications across various cancers. Differential analysis revealed elevated RPN1 expression in multiple cancer types, indicating a potential prognostic value.
View Article and Find Full Text PDFFASEB J
March 2025
Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA.
Butyrophilin 3A1 (BTN3A1) is an integral membrane protein capable of detecting phosphoantigens, like (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), through its internal B30.2 domain. Detection of phosphoantigens leads to interactions with butyrophilin 2A1 and the subsequent activation of γδ-T cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!