A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Aldehyde Oxidase Contributes to All--Retinoic Acid Biosynthesis in Human Liver. | LitMetric

Aldehyde Oxidase Contributes to All--Retinoic Acid Biosynthesis in Human Liver.

Drug Metab Dispos

Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (G.Z., C.J.S., H.X., N.I.); Department of Chemistry, Washington State University, Pullman, Washington (E.M.P., J.P.J.); and Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington (K.-L.H., N.P.K.)

Published: March 2021

All--retinoic acid (RA) is a critical endogenous signaling molecule. RA is predominantly synthesized from retinaldehyde by aldehyde dehydrogenase 1A1 (ALDH1A1), but aldehyde oxidase (AOX) may also contribute to RA biosynthesis. The goal of this study was to test the hypothesis that AOX contributes significantly to RA formation in human liver. Human recombinant AOX formed RA from retinaldehyde (K ∼1.5 ± 0.4 µM; k ∼3.6 ± 2.0 minute). In human liver S9 fractions (HLS9), RA formation was observed in the absence of NAD, suggesting AOX contribution to RA formation. In the presence of NAD, Eadie-Hofstee plots of RA formation in HLS9 indicated that two enzymes contributed to RA formation. The two enzymes were identified as AOX and ALDH1A1 based on inhibition of RA formation by AOX inhibitor hydralazine (20%-50% inhibition) and ALDH1A1 inhibitor WIN18,446 (50%-80%inhibition). The expression of AOX in HLS9 was 9.4-24 pmol mg S9 protein, whereas ALDH1A1 expression was 156-285 pmol mg S9 protein measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) quantification of signature peptides. The formation velocity of RA in the presence of NAD correlated significantly with the expression of ALDH1A1 and AOX protein. Taken together, the data show that both AOX and ALDH1A1 contribute to RA biosynthesis in the human liver, with ALDH1A1 being the high-affinity, low-capacity enzyme and AOX being the low-affinity, high-capacity enzyme. The results suggest that in the case of ALDH1A dysfunction or excess vitamin A, AOX may play an important role in regulating hepatic vitamin A homeostasis and that inhibition of AOX may alter RA biosynthesis and signaling. SIGNIFICANCE STATEMENT: This study provides direct evidence to show that human AOX converts retinaldehyde to RA and contributes to hepatic RA biosynthesis. The finding that AOX may be responsible for 20%-50% of overall hepatic RA formation suggests that alterations in AOX activity via drug-drug interactions, genetic polymorphisms, or disease states may impact hepatic RA concentrations and signaling and alter vitamin A homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7885020PMC
http://dx.doi.org/10.1124/dmd.120.000296DOI Listing

Publication Analysis

Top Keywords

human liver
16
aox
15
aldehyde oxidase
8
all--retinoic acid
8
biosynthesis human
8
contribute biosynthesis
8
formation
8
presence nad
8
aox aldh1a1
8
pmol protein
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!