Gas flows are often analyzed with the theoretical descriptions formulated over a century ago and constantly challenged by the emerging architectures of narrow channels, slits, and apertures. Here, we report atomic-scale defects in two-dimensional (2D) materials as apertures for gas flows at the ultimate quasi-0D atomic limit. We establish that pristine monolayer tungsten disulfide (WS) membranes act as atomically thin barriers to gas transport. Atomic vacancies from missing tungsten (W) sites are made in freestanding (WS) monolayers by focused ion beam irradiation and characterized using aberration-corrected transmission electron microscopy. WS monolayers with atomic apertures are mechanically sturdy and showed fast helium flow. We propose a simple yet robust method for confirming the formation of atomic apertures over large areas using gas flows, an essential step for pursuing their prospective applications in various domains including molecular separation, single quantum emitters, sensing and monitoring of gases at ultralow concentrations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11206212 | PMC |
http://dx.doi.org/10.1126/sciadv.abc7927 | DOI Listing |
PLoS One
January 2025
Institute of Wood Technology, Akita Prefectural University, Noshiro, Akita, Japan.
To mitigate global warming, replacing concrete and steel with timber as the primary construction material for construction projects, such as check dams, is being promoted in Japan and other countries. Timber check dams have more limited installation sites than concrete or steel dams because of installation conditions such as locations less susceptible to debris flows and locations where there is constant running water. However, even when the installation conditions are met, engineers and contractors are reluctant to select timber as a construction material because of its high construction cost.
View Article and Find Full Text PDFInt J Pharm
January 2025
School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, New South Wales 2007, Australia. Electronic address:
Nanocarrier-based dry powders for lung disease treatment are crucial, with in vitro and in silico research being pivotal to their success. This study introduces a method for creating Tiotropium-bromide liposomal inhalation dry powder, termed "Trojan-particles," utilizing thin-film hydration and spray-drying with lactose-arginine carriers. Encapsulating tiotropium-bromide in nanoliposomes enhances lung treatment via liposomes' unique features.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London SE1 9RT, UK.
Extracorporeal carbon dioxide removal (ECCOR) is an emerging technique designed to reduce carbon dioxide (CO) levels in venous blood while enabling lung-protective ventilation or alleviating the work of breathing. Unlike high-flow extracorporeal membrane oxygenation (ECMO), ECCOR operates at lower blood flows (0.4-1.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Huanjiang Laboratory, Zhuji 311800, China.
Flexible fibers, such as biomass particles and glass fibers, are critical raw materials in the energy and composites industries. Assemblies of the fibers show strong interlocking, non-Newtonian and compressible flows, intermittent avalanches, and high energy dissipation rates due to their elongation and flexibility. Conventional mechanical theories developed for regular granular materials, such as dry sands and pharmaceutical powders, are often unsuitable for modeling flexible fibers, which exhibit more complex mechanical behaviors.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical Engineering, College of Engineering, University of Ha'il, 81451, Ha'il City, Saudi Arabia.
Non-Newtonian fluids are also widely used in a variety of scientific, engineering, and industrial domains, including the petroleum sector and polymer technologies. They are vital in the development of drag-reducing agents, damping and braking systems, food manufacturing, personal protective equipment, and the printing industry. Fluid movement and transport via porous materials draw a lot of attention; they are important in science and technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!