The role of brain size on mammalian population densities.

J Anim Ecol

Department of Environmental Science, Institute for Wetland and Water Research, Faculty of Science, Radboud University, Nijmegen, The Netherlands.

Published: March 2021

The local abundance or population density of different organisms often varies widely. Understanding what determines this variation is an important, but not yet fully resolved question in ecology. Differences in population density are partly driven by variation in body size and diet among organisms. Here we propose that the size of an organism' brain could be an additional, overlooked, driver of mammalian population densities. We explore two possible contrasting mechanisms by which brain size, measured by its mass, could affect population density. First, because of the energetic demands of larger brains and their influence on life history, we predict mammals with larger relative brain masses would occur at lower population densities. Alternatively, larger brains are generally associated with a greater ability to exploit new resources, which would provide a competitive advantage leading to higher population densities among large-brained mammals. We tested these predictions using phylogenetic path analysis, modelling hypothesized direct and indirect relationships between diet, body mass, brain mass and population density for 656 non-volant terrestrial mammalian species. We analysed all data together and separately for marsupials and the four taxonomic orders with most species in the dataset (Carnivora, Cetartiodactyla, Primates, Rodentia). For all species combined, a single model was supported showing lower population density associated with larger brains, larger bodies and more specialized diets. The negative effect of brain mass was also supported for separate analyses in Primates and Carnivora. In other groups (Rodentia, Cetartiodactyla and marsupials) the relationship was less clear: supported models included a direct link from brain mass to population density but 95% confidence intervals of the path coefficients overlapped zero. Results support our hypothesis that brain mass can explain variation in species' average population density, with large-brained species having greater area requirements, although the relationship may vary across taxonomic groups. Future research is needed to clarify whether the role of brain mass on population density varies as a function of environmental (e.g. environmental stability) and biotic conditions (e.g. level of competition).

Download full-text PDF

Source
http://dx.doi.org/10.1111/1365-2656.13397DOI Listing

Publication Analysis

Top Keywords

population density
32
brain mass
20
population densities
16
population
12
larger brains
12
mass population
12
role brain
8
brain size
8
mammalian population
8
density
8

Similar Publications

Pregnancy induces significant changes in the maternal cardiovascular system, and insufficient vascular endothelial adaptations to pregnancy contribute to the development of pregnancy complications such as pre-eclampsia. Pre-eclampsia is not only a major cause of maternal morbidity and mortality, but also a significant risk factor for the development of later-life cardiovascular disease. However, the specific mechanisms underlying the pathophysiology of pre-eclampsia, as well as the mechanisms for an increased susceptibility to cardiovascular disease later in life, are not fully characterized.

View Article and Find Full Text PDF

The mosquito species Aedes aegypti (Linneaus) is the vector of multiple arboviruses, including dengue, Chikungunya, Zika, and yellow fever. Risk of infections associated with these arboviruses continues to expand as the geographical range of Ae. aegypti extends into temperate regions.

View Article and Find Full Text PDF

Background: Brazil has the second highest case count of Hansen's disease (leprosy, HD), but factors contributing to transmission in highly endemic areas of the country remain unclear. Recent studies have shown associations of helminth infection and leprosy, supporting a biological plausibility for increased leprosy transmission in areas with helminths. However, spatial analyses of the overlap of these infections are limited.

View Article and Find Full Text PDF

Obesity may be more prevalent among populations who are of low socioeconomic status, have limited access to nutrient-dense foods, or both. One such population is justice-involved youth. This series of translational experiments builds on previous research on food reinforcement and behavioral demand by (a) assaying demand for snack foods among justice-involved adolescents and (b) evaluating the effect of a nutrition intervention on justice-involved adolescents' demand for healthier alternatives.

View Article and Find Full Text PDF

Background: Low-density lipoprotein receptor-related protein-2 (LRP2), also called megalin, is a multi-ligand receptor of the LDL receptor gene family mediating reabsorption of ligands like Apo-A1. Type 2 diabetes mellitus (T2DM) may possibly disrupt megalin functions as it is found to be regulated by insulin. This might cause cardiovascular complications due to derangement in lipoprotein metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!