A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Formulating multi diseases dataset for identifying, triaging and prioritizing patients to multi medical emergency levels: Simulated dataset accompanied with codes. | LitMetric

This paper provides simulated datasets for triaging and prioritizing patients that are essentially required to support multi emergency levels. To this end, four types of input signals are presented, namely, electrocardiogram (ECG), blood pressure, and oxygen saturation (SpO2), where the latter is text. To obtain the aforementioned signals, the PhysioNet online library [1], is used, which is considered as one of the most reliable and relevant libraries in the healthcare services and bioinformatics sciences. In particular, this library contains collections of several databases and signals, where some of these signals are related to ECG, blood pressure, and SpO2 sensor. The simulated datasets, which are accompanied by codes, are presented in this paper. The contributions of our work, which are related to the presented dataset, can be summarized as follow. (1) The presented dataset is considered as an essential feature that is extracted from the signal records. Specifically, the dataset includes medical vital features such as: QRS width; ST elevation; peaks number; cycle interval from ECG signal; SpO2 level from SpO2 signal; high blood (systolic) pressure value; and low-pressure (diastolic) value from blood pressure signal. These essential features have been extracted based on our machine learning algorithms. In addition, new medical features are added based on medical doctors' recommendations, which are given as text-inputs, e.g., chest pain, shortness of breath, palpitation, and whether the patient at rest or not. All these features are considered to be significant symptoms for many diseases such as: heart attack or stroke; sleep apnea; heart failure; arrhythmia; and blood pressure chronic diseases. (2) The formulated dataset is considered in the doctor diagnostic procedures for identifying the patients' emergency level. (3) In the PhysioNet online library [1], the ECG, blood pressure, and SpO2 have been represented as signals. In contrast, we use some signal processing techniques to re-present the dataset by numeric values, which enable us to extract the essential features of the dataset in Excel sheet representations. (4) The dataset is re-organized and re-formatted to be presented in a useful structure feasible format. Specifically, the dataset is re-presented in terms of tables to illustrate the patient's profile and the type of diseases. (5) The presented dataset is utilized in the evaluation of medical monitoring and healthcare provisioning systems [2]. (6) Some simulated codes for feature extractions are also provided in this paper.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7744952PMC
http://dx.doi.org/10.1016/j.dib.2020.106576DOI Listing

Publication Analysis

Top Keywords

blood pressure
20
ecg blood
12
presented dataset
12
dataset
11
triaging prioritizing
8
prioritizing patients
8
emergency levels
8
accompanied codes
8
simulated datasets
8
physionet online
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!