The acoustic startle response (ASR) is an involuntary muscle reflex that occurs in response to a transient loud sound and is a highly-utilized method of assessing hearing status in animal models. Currently, a high level of variability exists in the recording and interpretation of ASRs due to the lack of standardization for collecting and analyzing these measures. An ensembled machine learning model was trained to predict whether an ASR waveform is a startle or non-startle using highly-predictive features extracted from normalized ASR waveforms collected from young adult CBA/CaJ mice. Features were extracted from the normalized waveform as well as the power spectral density estimates and continuous wavelet transforms of the normalized waveform. Machine learning models utilizing methods from different families of algorithms were individually trained and then ensembled together, resulting in an extremely robust model.•ASR waveforms were normalized using the mean and standard deviation computed before the startle elicitor was presented•9 machine learning algorithms from 4 different families of algorithms were individually trained using features extracted from the normalized ASR waveforms•Trained machine learning models were ensembled to produce an extremely robust classifier.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7744771PMC
http://dx.doi.org/10.1016/j.mex.2020.101166DOI Listing

Publication Analysis

Top Keywords

machine learning
20
features extracted
12
extracted normalized
12
acoustic startle
8
normalized asr
8
normalized waveform
8
learning models
8
families algorithms
8
algorithms individually
8
individually trained
8

Similar Publications

Background: Aneuploidy is crucial yet under-explored in cancer pathogenesis. Specifically, the involvement of brain expressed X-linked gene 4 () in microtubule formation has been identified as a potential aneuploidy mechanism. Nevertheless, 's comprehensive impact on aneuploidy incidence across different cancer types remains unexplored.

View Article and Find Full Text PDF

Machine-Learning-Aided Engineering Hemoglobin as Carbene Transferase for Catalyzing Enantioselective Olefin Cyclopropanation.

JACS Au

December 2024

Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, P. R. China.

In this study, we developed a machine-learning-aided protein design strategy for engineering hemoglobin (VHb) as carbene transferase. A Natural Language Processing (NLP) model was used for the first time to construct an algorithm (EESP, enzyme enantioselectivity score predictor) and predict the enantioselectivity of VHb. We identified critical amino acid residue sites by molecular docking and established a simplified mutation library by site-saturated mutagenesis.

View Article and Find Full Text PDF

Objective: A comprehensive bioinformatics analysis was conducted to investigate potential new diagnostic biomarkers and immune infiltration characteristics associated with tubulointerstitial injury in lupus nephritis (LN), and to examine possible correlations between key genes and infiltrating immune cells.

Methods: The GSE32591, GSE113342, and GSE200306 datasets were downloaded from the Gene Expression Omnibus database and differentially expressed genes (DEGs) were identified in the pooled dataset. Support vector machine-recursive feature elimination analysis and the least absolute shrinkage and selection operator regression model were used to screen for possible markers, and the compositional patterns of the 22 types of immune cell fractions in LN were determined using CIBERSORT.

View Article and Find Full Text PDF

Single-Cell Sequencing and Machine Learning Integration to Identify Candidate Biomarkers in Psoriasis: .

J Inflamm Res

December 2024

Department of Dermatology, China-Japan Friendship Hospital, National Center for Integrative Medicine, Beijing, 100029, People's Republic of China.

Background: Psoriasis represents a persistent, immune-driven inflammatory condition affecting the skin, characterized by a lack of well-established biologic treatments without adverse events. Consequently, the identification of novel targets and therapeutic agents remains a pressing priority in the field of psoriasis research.

Methods: We collected single-cell RNA sequencing (scRNA-seq) datasets and inferred T cell differentiation trajectories through pseudotime analysis.

View Article and Find Full Text PDF

Background: Coronary artery bypass grafting (CABG) surgery has been a widely accepted method for treating coronary artery disease. However, its postoperative complications can have a significant effect on long-term patient outcomes. A retrospective study was conducted to identify before and after surgery that contribute to postoperative stroke in patients undergoing CABG, and to develop predictive models and recommendations for single-factor thresholds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!