Developing a machine learning model to identify protein-protein interaction hotspots to facilitate drug discovery.

PeerJ

Program of Biomedical Informatics, College of Health Solutions, Arizona State University, Tempe, AZ, USA.

Published: December 2020

Throughout the history of drug discovery, an enzymatic-based approach for identifying new drug molecules has been primarily utilized. Recently, protein-protein interfaces that can be disrupted to identify small molecules that could be viable targets for certain diseases, such as cancer and the human immunodeficiency virus, have been identified. Existing studies computationally identify hotspots on these interfaces, with most models attaining accuracies of ~70%. Many studies do not effectively integrate information relating to amino acid chains and other structural information relating to the complex. Herein, (1) a machine learning model has been created and (2) its ability to integrate multiple features, such as those associated with amino-acid chains, has been evaluated to enhance the ability to predict protein-protein interface hotspots. Virtual drug screening analysis of a set of hotspots determined on the EphB2-ephrinB2 complex has also been performed. The predictive capabilities of this model offer an AUROC of 0.842, sensitivity/recall of 0.833, and specificity of 0.850. Virtual screening of a set of hotspots identified by the machine learning model developed in this study has identified potential medications to treat diseases caused by the overexpression of the EphB2-ephrinB2 complex, including prostate, gastric, colorectal and melanoma cancers which are linked to EphB2 mutations. The efficacy of this model has been demonstrated through its successful ability to predict drug-disease associations previously identified in literature, including cimetidine, idarubicin, pralatrexate for these conditions. In addition, nadolol, a beta blocker, has also been identified in this study to bind to the EphB2-ephrinB2 complex, and the possibility of this drug treating multiple cancers is still relatively unexplored.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7727375PMC
http://dx.doi.org/10.7717/peerj.10381DOI Listing

Publication Analysis

Top Keywords

machine learning
12
learning model
12
ephb2-ephrinb2 complex
12
drug discovery
8
ability predict
8
set hotspots
8
model
5
hotspots
5
drug
5
identified
5

Similar Publications

This research letter discusses the impact of different file formats on ChatGPT-4's performance on the Japanese National Nursing Examination, highlighting the need for standardized reporting protocols to enhance the integration of artificial intelligence in nursing education and practice.

View Article and Find Full Text PDF

Background: Patients with cerebrovascular accident (CVA) should be involved in setting their rehabilitation goals. A personalized prediction of CVA outcomes would allow care professionals to better inform patients and informal caregivers. Several accurate prediction models have been created, but acceptance and proper implementation of the models are prerequisites for model adoption.

View Article and Find Full Text PDF

Background: Perception-related errors comprise most diagnostic mistakes in radiology. To mitigate this problem, radiologists use personalized and high-dimensional visual search strategies, otherwise known as search patterns. Qualitative descriptions of these search patterns, which involve the physician verbalizing or annotating the order he or she analyzes the image, can be unreliable due to discrepancies in what is reported versus the actual visual patterns.

View Article and Find Full Text PDF

Background: To reduce the mortality related to bladder cancer, efforts need to be concentrated on early detection of the disease for more effective therapeutic intervention. Strong risk factors (eg, smoking status, age, professional exposure) have been identified, and some diagnostic tools (eg, by way of cystoscopy) have been proposed. However, to date, no fully satisfactory (noninvasive, inexpensive, high-performance) solution for widespread deployment has been proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!