The spinal cord injury (SCI) research community has experienced great advances in discovery research, technology development, and promising clinical interventions in the past decade. To build upon these advances and maximize the benefit to persons with SCI, the National Institutes of Health (NIH) hosted a conference February 12-13, 2019 titled "SCI 2020: Launching a Decade of Disruption in Spinal Cord Injury Research." The purpose of the conference was to bring together a broad range of stakeholders, including researchers, clinicians and healthcare professionals, persons with SCI, industry partners, regulators, and funding agency representatives to break down existing communication silos. Invited speakers were asked to summarize the state of the science, assess areas of technological and community readiness, and build collaborations that could change the trajectory of research and clinical options for people with SCI. In this report, we summarize the state of the science in each of five key domains and identify the gaps in the scientific literature that need to be addressed to move the field forward.

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.2020.7174DOI Listing

Publication Analysis

Top Keywords

spinal cord
12
cord injury
12
2020 launching
8
launching decade
8
decade disruption
8
disruption spinal
8
persons sci
8
summarize state
8
state science
8
sci
5

Similar Publications

Background: Spinal cord injury (SCI) triggers a complex inflammatory response that impedes neural repair and functional recovery. The modulation of macrophage phenotypes is thus considered a promising therapeutic strategy to mitigate inflammation and promote regeneration.

Methods: We employed microarray and single-cell RNA sequencing (scRNA-seq) to investigate gene expression changes and immune cell dynamics in mice following crush injury at 3 and 7 days post-injury (dpi).

View Article and Find Full Text PDF

Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a rare white matter disease characterized by axonal and glial injury. Although its clinical characteristics have been described in case reports, the prevalence of CSF1R mutations in clinically suspected ALSP cases remains unclear. Herein, we analysed the frequency of CSF1R mutations in patients with probable or possible ALSP and describe the genetic, clinical, radiological, and pathological findings of ALSP cases in individuals of Korean ancestry.

View Article and Find Full Text PDF

Spinal cord injury (SCI) poses a complex set of physiological, psychological, and cognitive challenges that significantly affect an individual's quality of life. Analysis of longitudinal studies reveals that cognitive changes following SCI are often underestimated yet significantly impact patient's ability to adapt to their new circumstances. However, the role of neuropsychology in SCI management and rehabilitation is yet to be elucidated.

View Article and Find Full Text PDF

Background: Resection of calcified meningiomas in the ventral thoracic spinal canal remains a formidable surgical challenge despite advances in technology and refined microsurgical techniques. These tumors, which account for a small percentage of spinal meningiomas, are characterized by their hardness, complicating safe resection and often resulting in worse outcomes than their noncalcified counterparts.

Observations: The authors present the case of a 68-year-old woman with a ventrally located ossified meningioma at the T9-10 level, successfully treated via a posterolateral transpedicular approach.

View Article and Find Full Text PDF

Spiny mice (Acomys spp.) are warm-blooded (homeothermic) vertebrates whose ability to restore missing tissue through regenerative healing has coincided with the evolution of unique cellular and physiological adaptations across different tissue types. This review seeks to explore how these bizarre rodents deploy unique or altered injury response mechanisms to either enhance tissue repair or fully regenerate excised tissue compared to closely related, scar-forming mammals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!