Nanofluidics encompasses a wide range of advanced approaches to study charge and mass transport at the nanoscale. Modern technologies allow us to develop and improve artificial nanofluidic platforms that confine ions in a way similar to single-ion channels in living cells. Therefore, nanofluidic platforms show great potential to act as a test field for theoretical models. This review aims to highlight ionic Coulomb blockade (ICB)-an effect that is proposed to be the key player of ion channel selectivity, which is based upon electrostatic exclusion limiting ion transport. Thus, in this perspective, we focus on the most promising approaches that have been reported on the subject. We consider ion confinements of various dimensionalities and highlight the most recent advancements in the field. Furthermore, we concentrate on the most critical obstacles associated with these studies and suggest possible solutions to advance the field further.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766073 | PMC |
http://dx.doi.org/10.3390/e22121430 | DOI Listing |
Nat Commun
January 2025
Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Key Laboratory of Low Dimensional Condensed Matter Physics (Department of Education of Fujian Province), Jiujiang Research Institute, Xiamen University, Xiamen, China.
Silicon-based all-solid-state batteries offer high energy density and safety but face significant application challenges due to the requirement of high external pressure. In this study, a LiSi/Si-LiSi double-layered anode is developed for all-solid-state batteries operating free from external pressure. Under the cold-pressed sintering of LiSi alloys, the anode forms a top layer (LiSi layer) with mixed ionic/electronic conduction and a bottom layer (Si-LiSi layer) containing a three-dimensional continuous conductive network.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China; National Key Laboratory of Biobased Transportation Fuel Technology, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China. Electronic address:
Cellulose has outstanding potential for application in energy storage batteries due to its high temperature resistance, high electrolyte affinity, renewability, and suppression of the shuttle effect, but single cellulose membranes still suffer from problems such as inhomogeneous pore distribution and unstable three-dimensional network structure. In this study, a green and sustainable regenerative cellulose (RC)/sodium alginate (SA) gel electrolyte membrane is developed by sol-gel process, the double crosslinked network scaffold centered on Zn was constructed by the synergistic hydrogen-bonding and metal ion- coordination network, the stable and uniform pore structure was also formed. The obtained RC-SA gel electrolyte membrane exhibits outstanding performance, featuring a dual crosslinked network with abundant pore structure and numerous polar groups that effectively enhance Zn transport, significantly improving battery cycling performance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
International Science and Technology Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
Poly(ethylene oxide) (PEO) has been widely studied as an electrolyte owing to its excellent lithium compatibility and good film-forming properties. However, its electrochemical performance at room temperature remains a significant challenge due to its low ionic conductivity, narrow electrochemical window, and continuous decomposition. Herein, we prepare a multifunctional polar polymer to optimize PEO's electrochemical properties and cycling stability.
View Article and Find Full Text PDFSmall
January 2025
College of Aerospace Engineering, Chongqing University, Chongqing, 400044, China.
Realizing fast charging in high-specific-energy lithium metal batteries (LMBs) remains a significant challenge. Here, a oleophilic garnet suspension electrolyte design is reported, using inorganic solid electrolyte modified by low-surface-energy 1H,1H,2H,2H-perfluorooctyl trichlorosilane (PFOTS), to address the dilemma of fast charging and high specific energy in LMBs. With the oleophilic suspension electrolytes, the ionic conductivity of carbonate electrolyte is increased by ≈20%.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Shanxi Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049 China. Electronic address:
The application of ionic liquid electrolytes in ultrafast supercapacitors to achieve wide electrochemical operating windows and high electrochemical stability is highly applauded. However, the strong Coulomb interaction between ions leads to the overscreening effect and slow establishment process of the electrical double layer (EDL), which deteriorates the rate performance of supercapacitors. Herein, inspired by Coulomb's law and EDL transient dynamics, we introduce competitive hydrogen bond interactions into typical ionic-liquid electrolytes to weaken the Coulomb interaction between ions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!