High-precision microelectromechanical system (MEMS) accelerometers have wide application in the military and civil fields. The closed-loop microaccelerometer interface circuit with switched capacitor topology has a high signal-to-noise ratio, wide bandwidth, good linearity, and easy implementation in complementary metal oxide semiconductor (CMOS) process. Aiming at the urgent need for high-precision MEMS accelerometers in geophones, we carried out relevant research on high-performance closed-loop application specific integrated circuit (ASIC) chips. According to the characteristics of the performance parameters and output signal of MEMS accelerometers used in geophones, a high-precision closed-loop interface ASIC chip based on electrostatic time-multiplexing feedback technology and proportion integration differentiation (PID) feedback control technology was designed and implemented. The interface circuit consisted of a low-noise charge-sensitive amplifier (CSA), a sampling and holding circuit, and a PID feedback circuit. We analyzed and optimized the noise characteristics of the interface circuit and used a capacitance compensation array method to eliminate misalignment of the sensitive element. The correlated double sampling (CDS) technology was used to eliminate low-frequency noise and offset of the interface circuit. The layout design and engineering batch chip were fabricated by a standard 0.35 μm CMOS process. The active area of the chip was 3.2 mm × 3 mm. We tested the performance of the accelerometer system with the following conditions: power dissipation of 7.7 mW with a 5 V power supply and noise density less than 0.5 μg/Hz. The accelerometers had a sensitivity of 1.2 V/g and an input range of ±1.2 g. The nonlinearity was 0.15%, and the bias instability was about 50 μg.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765797 | PMC |
http://dx.doi.org/10.3390/s20247280 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing 210096, China.
Metal-semiconductor contact plays a significant role in devices such as transistors, photoemitters, and photodetectors. Here, the AuIn alloy contact gives a state-of-the-art low (contact resistance) in GeSe devices. The of GeSe-AuIn is measured to be 25 kΩ μm under channel carrier concentration around = 2.
View Article and Find Full Text PDFMultiscale Model Simul
January 2024
Applied Mathematics, University of Colorado, Boulder, CO 80309 USA.
The distinct timescales of synaptic plasticity and neural activity dynamics play an important role in the brain's learning and memory systems. Activity-dependent plasticity reshapes neural circuit architecture, determining spontaneous and stimulus-encoding spatiotemporal patterns of neural activity. Neural activity bumps maintain short term memories of continuous parameter values, emerging in spatially organized models with short-range excitation and long-range inhibition.
View Article and Find Full Text PDFNat Commun
January 2025
School of Integrated Circuits and Frontier Science Center for Quantum Information, Tsinghua University, Beijing, China.
Cubic silicon-carbide crystals (3C-SiC), known for their high thermal conductivity and in-plane stress, hold significant promise for the development of high-quality (Q) mechanical oscillators. We reveal degeneracy-breaking phenomena in 3C-phase crystalline silicon-carbide membrane and present high-Q mechanical modes in pairs or clusters. The 3C-SiC material demonstrates excellent microwave compatibility with superconducting circuits.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany.
Solid additives have garnered significant attention due to their numerous advantages over liquid additives. This study explores the potential of the green-fluorescent conjugated polymer denoted Atums Green as a solid additive in green-solvent-based PBDB-TF-T1:BTP-4F-12 solar cells. Even tiny amounts of Atums Green doping significantly improve the device performance.
View Article and Find Full Text PDFCell Chem Biol
January 2025
Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland. Electronic address:
Human body cells and our daily electronic devices both communicate information within their distinct worlds by regulating the flow of electrons across specified membranes. While electronic devices depend on the flow of electrons generated by conductive materials to communicate within a digital network, biological systems use ion gradients, created in analog biochemical reactions, to trigger biological data transmission throughout multicellular systems. Electrogenetics is an emerging concept in synthetic biology in which electrons generated by digital electronic devices program customized electron-responsive biological units within living cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!