MMW Radar-Based Technologies in Autonomous Driving: A Review.

Sensors (Basel)

State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China.

Published: December 2020

AI Article Synopsis

  • The study focuses on the importance of millimeter-wave (MMW) radar in the development of automated vehicles (AVs) due to its cost-effectiveness, adaptability to weather conditions, and motion detection capabilities.
  • The paper provides an overview of radar-based technologies, highlighting their use in various levels of autonomous driving, including their applications in advanced driving-assistance systems (ADAS) and high-level tasks like object detection and motion prediction.
  • It also identifies gaps in existing research, particularly the lack of surveys on deep learning applications for radar data in AVs, and discusses future challenges and directions for further study.

Article Abstract

With the rapid development of automated vehicles (AVs), more and more demands are proposed towards environmental perception. Among the commonly used sensors, MMW radar plays an important role due to its low cost, adaptability In different weather, and motion detection capability. Radar can provide different data types to satisfy requirements for various levels of autonomous driving. The objective of this study is to present an overview of the state-of-the-art radar-based technologies applied In AVs. Although several published research papers focus on MMW Radars for intelligent vehicles, no general survey on deep learning applied In radar data for autonomous vehicles exists. Therefore, we try to provide related survey In this paper. First, we introduce models and representations from millimeter-wave (MMW) radar data. Secondly, we present radar-based applications used on AVs. For low-level automated driving, radar data have been widely used In advanced driving-assistance systems (ADAS). For high-level automated driving, radar data is used In object detection, object tracking, motion prediction, and self-localization. Finally, we discuss the remaining challenges and future development direction of related studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766872PMC
http://dx.doi.org/10.3390/s20247283DOI Listing

Publication Analysis

Top Keywords

radar data
16
radar-based technologies
8
autonomous driving
8
mmw radar
8
automated driving
8
driving radar
8
radar
6
data
5
mmw
4
mmw radar-based
4

Similar Publications

In short-range microwave imaging, the collection of data in real environments for the purpose of developing techniques for target detection is very cumbersome. Simultaneously, to develop effective and efficient AI/ML-based techniques for target detection, a sufficiently large dataset is required. Therefore, to complement labor-intensive and tedious experimental data collected in a real cluttered environment, synthetic data generation via cost-efficient electromagnetic wave propagation simulations is explored in this article.

View Article and Find Full Text PDF

The fusion of multiple sensors' data in real-time is a crucial process for autonomous and assisted driving, where high-level controllers need classification of objects in the surroundings and estimation of relative positions. This paper presents an open-source framework to estimate the distance between a vehicle equipped with sensors and different road objects on its path using the fusion of data from cameras, radars, and LiDARs. The target application is an Advanced Driving Assistance System (ADAS) that benefits from the integration of the sensors' attributes to plan the vehicle's speed according to real-time road occupation and distance from obstacles.

View Article and Find Full Text PDF

Aboveground biomass estimation in a grassland ecosystem using Sentinel-2 satellite imagery and machine learning algorithms.

Environ Monit Assess

January 2025

School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, 2000, South Africa.

The grassland ecosystem forms a critical part of the natural ecosystem, covering up to 15-26% of the Earth's land surface. Grassland significantly impacts the carbon cycle and climate regulation by storing carbon dioxide. The organic matter found in grassland biomass, which acts as a carbon source, greatly expands the carbon stock in terrestrial ecosystems.

View Article and Find Full Text PDF

Development of Research Foundation for Comprehensive Articulation of Drug Effects.

Biol Pharm Bull

January 2025

Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.

As unexpected adverse events and successful drug repositioning have shown, drug effects are complex and include aspects not recognized by developers. How can we understand these unrecognized drug effects? Drug effects can be numerized by encompassing biological responses to drugs. For instance, the transcriptome data of cultured cells and toxicopathological images of mice treated with a compound represent the effects of the compound in vitro and in vivo, respectively.

View Article and Find Full Text PDF

A New Global Mangrove Height Map with a 12 meter spatial resolution.

Sci Data

January 2025

ETH Zürich, Institut für Umweltingenieurwissenschaften, Zürich, Switzerland.

Mangrove forests thrive along global tropical coasts, acting as a barrier that protects coastlines against storm surges and as nurseries for an entire food web. They are also known for their high carbon sequestration rates and soil carbon stocks. We introduce a new global mangrove canopy height map generated from TanDEM-X spaceborne elevation measurements collected during the 2011-2013 period with a 12-meter spatial resolution and an accuracy of 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!