A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dimethyl Fumarate Attenuates Lung Inflammation and Oxidative Stress Induced by Chronic Exposure to Diesel Exhaust Particles in Mice. | LitMetric

Air pollution is mainly caused by burning of fossil fuels, such as diesel, and is associated with increased morbidity and mortality due to adverse health effects induced by inflammation and oxidative stress. Dimethyl fumarate (DMF) is a fumaric acid ester and acts as an antioxidant and anti-inflammatory agent. We investigated the potential therapeutic effects of DMF on pulmonary damage caused by chronic exposure to diesel exhaust particles (DEPs). Mice were challenged with DEPs (30 μg per mice) by intranasal instillation for 60 consecutive days. After the first 30 days, the animals were treated daily with 30 mg/kg of DMF by gavage for the remainder of the experimental period. We demonstrated a reduction in total inflammatory cell number in the bronchoalveolar lavage (BAL) of mice subjected to DEP + DMF as compared to those exposed to DEPs alone. Importantly, DMF treatment was able to reduce lung injury caused by DEP exposure. Intracellular total reactive oxygen species (ROS), peroxynitrite (OONO), and nitric oxide (NO) levels were significantly lower in the DEP + DMF than in the DEP group. In addition, DMF treatment reduced the protein expression of kelch-like ECH-associated protein 1 (Keap-1) in lung lysates from DEP-exposed mice, whereas total nuclear factor κB (NF-κB) p65 expression was decreased below baseline in the DEP + DMF group compared to both the control and DEP groups. Lastly, DMF markedly reduced DEP-induced expression of nitrotyrosine, glutathione peroxidase-1/2 (Gpx-1/2), and catalase in mouse lungs. In summary, DMF treatment effectively reduced lung injury, inflammation, and oxidative and nitrosative stress induced by chronic DEP exposure. Consequently, it may lead to new therapies to diminish lung injury caused by air pollutants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7767202PMC
http://dx.doi.org/10.3390/ijms21249658DOI Listing

Publication Analysis

Top Keywords

inflammation oxidative
12
dep dmf
12
dmf treatment
12
lung injury
12
dmf
10
dimethyl fumarate
8
oxidative stress
8
stress induced
8
induced chronic
8
chronic exposure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!