Accurate elevation data, which can be extracted from very high-resolution (VHR) satellite images, are vital for many engineering and land planning applications. In this way, the main goal of this work is to evaluate the capabilities of VHR Deimos-2 panchromatic stereo pairs to obtain digital surface models (DSM) over different land covers (bare soil, urban and agricultural greenhouse areas). As a step prior to extracting the DSM, different orientation models based on refined rational polynomial coefficients (RPC) and a variable number of very accurate ground control points (GCPs) were tested. The best sensor orientation model for Deimos-2 L1B satellite images was the RPC model refined by a first-order polynomial adjustment (RPC1) supported on 12 accurate and evenly spatially distributed GCPs. Regarding the Deimos-2 based DSM, its completeness and vertical accuracy were compared with those obtained from a WorldView-2 panchromatic stereo pair by using exactly the same methodology and semiglobal matching (SGM) algorithm. The Deimos-2 showed worse completeness values (about 6% worse) and vertical accuracy results (RMSE 42.4% worse) than those computed from WorldView-2 imagery over the three land covers tested, although only urban areas yielded statistically significant differences ( < 0.05).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766262 | PMC |
http://dx.doi.org/10.3390/s20247234 | DOI Listing |
We propose, to the best of our knowledge, a novel deep learning-enabled four-dimensional spectral imaging system composed of a reflective coded aperture snapshot spectral imaging system and a panchromatic camera. The system simultaneously captures a compressively coded hyperspectral measurement and a panchromatic measurement. The hyperspectral data cube is recovered by the U-net-3D network.
View Article and Find Full Text PDFSensors (Basel)
December 2020
Department of Engineering, Research Centre CIAIMBITAL, University of Almeria, Carretera de Sacramento s/n, La Cañada de San Urbano, 04120 Almeria, Spain.
Accurate elevation data, which can be extracted from very high-resolution (VHR) satellite images, are vital for many engineering and land planning applications. In this way, the main goal of this work is to evaluate the capabilities of VHR Deimos-2 panchromatic stereo pairs to obtain digital surface models (DSM) over different land covers (bare soil, urban and agricultural greenhouse areas). As a step prior to extracting the DSM, different orientation models based on refined rational polynomial coefficients (RPC) and a variable number of very accurate ground control points (GCPs) were tested.
View Article and Find Full Text PDFRev Sci Instrum
April 2019
INAF Astronomical Observatory of Padova, Vicolo dell'Osservatorio 5, 35122 Padova, Italy.
The STereo imaging Channel (STC) is the first push-frame stereo camera on board an European Space Agency (ESA) satellite, i.e., the ESA-Japan Aerospace eXploration Agency mission BepiColombo.
View Article and Find Full Text PDFGeospat Health
November 2016
World Health Organization, Geneva.
Environmental surveillance supplements the surveillance of acute flaccid paralysis by monitoring wastewater for poliovirus circulation. Building on previous work, we analysed wastewater flow to optimise selection and placement of sampling sites with higher digital surface model (DSM) resolution. The newly developed 5-m mesh DSM from the panchromatic, remote-sensing instruments for stereo mapping on-board the Japanese advanced land observing satellite was used to estimate catchment areas and flow of sewage water based on terrain topography.
View Article and Find Full Text PDFGiven the recent development in high-resolution (HR) optical satellites, the study of both attitude jitter (AJ) detection and compensation has become increasingly essential to improving the radiometric and geometric quality of HR images. A group of HR optical stereo mapping satellites in China, mapping satellite-1 (MS-1) has launched two satellites and will launch one satellite to build a satellite network. The geometric accuracy of the launched MS-1 satellites is greater than 80 m because of the AJ caused by the instability of the platform.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!