The gut-brain-microbiota axis consists of a bilateral communication system that enables gut microbes to interact with the brain, and the latter with the gut. Gut bacteria influence behavior, and both depression and anxiety symptoms are directly associated with alterations in the microbiota. Psychobiotics are defined as probiotics that confer mental health benefits to the host when ingested in a particular quantity through interaction with commensal gut bacteria. The action mechanisms by which bacteria exert their psychobiotic potential has not been completely elucidated. However, it has been found that these bacteria provide their benefits mostly through the hypothalamic-pituitary-adrenal (HPA) axis, the immune response and inflammation, and through the production of neurohormones and neurotransmitters. This review aims to explore the different approaches to evaluate the psychobiotic potential of several bacterial strains and fermented products. The reviewed literature suggests that the consumption of psychobiotics could be considered as a viable option to both look after and restore mental health, without undesired secondary effects, and presenting a lower risk of allergies and less dependence compared to psychotropic drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7767237 | PMC |
http://dx.doi.org/10.3390/nu12123896 | DOI Listing |
Gut Microbes
December 2025
Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
Establishment of the gut microbiota during infancy is critical for host health with long-lasting implications. In this orchestrated process, microbial assembly is influenced by an increasing number of genetic and environmental factors, among which breastfeeding is considered as one of the most significant drivers for infant gut microbiota development. As the optimal diet for the infants, maternal milk provides numerous nutritional, microbial, and bioactive components to ensure the most adequate microbial growth and development of a 'healthy' gut microbiota during early life.
View Article and Find Full Text PDFCurr Res Microb Sci
November 2024
Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China.
The intestinal microbiota comprises approximately 10-10 species of bacteria and plays a crucial role in host metabolism by facilitating various chemical reactions. Secondary bile acids (BAs) are key metabolites produced by gut microbiota.Initially synthesized by the liver, BA undergoes structural modifications through the activity of various intestinal microbiota enzymes, including eukaryotic, bacterial, and archaeal enzymes.
View Article and Find Full Text PDFFront Microbiol
December 2024
First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China.
Despite the high sepsis-associated mortality, effective and specific treatments remain limited. Using conventional antibiotics as TIENAM (imipenem and cilastatin sodium for injection, TIE) is challenging due to increasing bacterial resistance, diminishing their efficacy and leading to adverse effects. We previously found that aloe-emodin (AE) exerts therapeutic effects on sepsis by reducing systemic inflammation and regulating the gut microbiota.
View Article and Find Full Text PDFWorld J Clin Cases
December 2024
Department of Neurosurgery, The Second Affiliated Hospital of Nantong University, Nantong 226000, Jiangsu Province, China.
In recent years, insomnia has gradually become a common disease in society, which seriously affects people's quality of life. At present, with the deepening of research on intestinal microbiota-gut-brain axis in Western medicine, many studies suggest that regulating the gastrointestinal tract can treat brain-related diseases. It is found that brain-gut-bacteria axis plays an important role in the prevention and treatment of primary insomnia.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China.
Background: Existing literature indicates that Gestational diabetes mellitus (GDM) and maternal obesity disrupt the normal colonization of the neonatal gut microbiota alone. Still, the combined impact of GDM and excessive gestational weight gain (EGWG) on this process remains under explored. The association between gestational weight gain before/after GDM diagnosis and neonatal gut microbiota characteristics is also unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!