Mitigating antibiotic pollution using cyanobacteria: Removal efficiency, pathways and metabolism.

Water Res

Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing 100049, China; School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, NG25 0QF, UK. Electronic address:

Published: February 2021

The occurrence of pharmaceuticals and personal care products (PPCPs) in wastewater poses huge environmental threats, even at trace concentrations, and novel approaches are urged due to the inefficiencies of conventional wastewater treatment plants, especially when processing contaminants at high concentrations. Meanwhile, another widespread problem in the aquatic domain is the occurrence of harmful algal blooms (HABs) which cause serious damage to the ecosystem, but have rarely been investigated for possible valorization. This study investigated the possibilities, mechanisms, and effects of toxin release of using a harmful cyanobacterial species, Microcystis aeruginosa (M. aeruginosa), in order to remove the widely used drug, tetracycline, at high concentration. The results were compared with the performance obtained by the use of the hitherto generally-selected chlorophyte alga Chlorella pyrenoidosa (C. pyrenoidosa) for tetracycline concentrations of 10-100 mg L. M. aeruginosa exhibited a much more effective and rapid tetracycline removal (over 98.0% removal in 2 days) than did C. pyrenoidosa (36.7%-93.9% in 2 days). A comprehensive kinetic investigation into probable removal pathways indicated that, theoretically, bio-remediation dominated the process by M. aeruginosa (71.6%), while only accounting for 20.5% by C. pyrenoidosa. Both microalgae promoted the hydrolysis of tetracycline under conditions of increased pH and inhibited abiotic photolytic reactions by the shading effect to the water column, when compared with control experiments. Although identical degradation by-products were identified from treatments by both microalgal species, distinct by-products were also confirmed, unique to each treatment. Moreover, the growth of M. aeruginosa biomass exhibited strong tolerance to tetracycline exposure and released significantly lower levels of microcystin-LR, compared with the control systems. This study supports the possibility of reusing HABs species for the effective remediation of antibiotics at high concentrations. We have further suggested possible mechanisms for remediation and demonstrated control of toxin release.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2020.116735DOI Listing

Publication Analysis

Top Keywords

high concentrations
8
toxin release
8
compared control
8
aeruginosa
5
tetracycline
5
mitigating antibiotic
4
antibiotic pollution
4
pollution cyanobacteria
4
removal
4
cyanobacteria removal
4

Similar Publications

Particulate matter, socioeconomic status, and cognitive function among older adults in China.

Arch Gerontol Geriatr

January 2025

Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, Singapore 117549, Singapore. Electronic address:

Background: Both air pollution and low socioeconomic status (SES) are associated with worse cognitive function. The extent to which low SES may compound the adverse effect of air pollution on cognitive function remains unclear.

Methods: 7,087 older adults aged 65 and above were included from the Chinese Longitudinal Healthy Longevity Survey (CLHLS) and followed up in 4 waves during 2008-2018.

View Article and Find Full Text PDF

Legacy contaminants tied to energy production are a worldwide concern. Coal combustion residues (CCRs) contain high concentrations of potentially toxic trace elements such as arsenic (As), mercury (Hg), and selenium (Se), which can persist for decades after initial contamination. CCR disposal methods, including aquatic settling basins and landfills, can facilitate environmental exposure through intentional and accidental releases.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are a large class of chemicals of concern for both human and environmental health because of their ubiquitous presence in the environment, persistence, and potential toxicological effects. Despite this, ecological hazard data are limited to a small number of PFAS even though there are over 4000 identified PFAS. Traditional toxicity testing will likely be inadequate to generate necessary hazard information for risk assessment.

View Article and Find Full Text PDF

Ginseng and its processed products are valued as health foods for their nutritional benefits. The traditional forms of processed ginseng include white ginseng, dali ginseng (DLG), red ginseng (RG), and black ginseng (BG). However, the impact of processing on the chemical composition and anti-tumor efficacy of these products is not well understood.

View Article and Find Full Text PDF

This study was intended to provide a novel process that fills a knowledge gap in relation to the enhancement of pulses utilization. The primary goal was to develop an experimental framework for using a high-pressure supercritical fluid extruder (SCFX) as a continuous bioreactor to produce off-flavor reduced and functionally superior pulse flours and protein concentrates in a single step. The current study focused on using SCFX processing to remove off-flavor from pulse flour and protein concentrates, enhancing the quality, acceptability, and marketability of pulse-based products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!