Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Stimulus-responsive hydrogels, such as conductive hydrogels and thermoresponsive hydrogels, have been explored extensively and are considered promising candidates for smart materials such as wearable devices and artificial muscles. However, most of the existing studies on stimulus-responsive hydrogels have mainly focused on their single stimulus-responsive property and have not explored multistimulus-responsive or multifunction properties. Although some works involved multifunctionality, the prepared hydrogels were incompatible. In this work, a multistimulus-responsive and multifunctional hydrogel system (carboxymethyl cellulose/poly acrylic-acrylamide) with good elasticity, superior flexibility, and stable conductivity was prepared. The prepared hydrogel not only showed excellent human motion detection and physiological signal response but also possessed the ability to respond to environmental temperature changes. By integrating a conductive hydrogel with a thermoresponsive poly(-isopropylacrylamide) (PNIPAM) hydrogel to form a bilayer hydrogel, the prepared bilayer also functioned as two kinds of actuators owing to the different degrees of swelling and shrinking under different thermal stimuli. Furthermore, the different thermochromic properties of each layer in the bilayer hydrogel endowed the hydrogel with a thermoresponsive "smart" feature, the ability to display and conceal information. Therefore, the prepared hydrogel system has excellent prospects as a smart material in different applications, such as ionic skin, smart info-window, and soft robotics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c16719 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!