A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Flow shear stress controls the initiation of neovascularization via heparan sulfate proteoglycans within a biomimetic microfluidic model. | LitMetric

Flow shear stress controls the initiation of neovascularization via heparan sulfate proteoglycans within a biomimetic microfluidic model.

Lab Chip

Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.

Published: January 2021

Endothelial cells (ECs) in vivo are subjected to three forms of shear stress induced by luminal blood flow, transendothelial flow and interstitial flow simultaneously. It is controversial that shear stress, especially the component induced by luminal flow, was thought to inhibit the initialization of angiogenesis and trigger arteriogenesis. Here, we combined microfabrication techniques and delicate numerical simulations to reconstruct the initial physiological microenvironment of neovascularization in vitro, where ECs experience high luminal shear stress, physiological transendothelial flow and various vascular endothelial growth factor (VEGF) distributions simultaneously. With the biomimetic microfluidic model, cell alignment and endothelial sprouting assays were carried out. We found that luminal shear stress inhibits endothelial sprouting and tubule formation in a dose-dependent manner. Although a high concentration of VEGF increases EC sprouting, neither a positive nor a negative VEGF gradient additionally affects the degree of sprouting, and luminal shear stress significantly attenuates neovascularization even in the presence of VEGF. Heparinase was used to selectively degrade the heparan sulfate proteoglycan (HSPG) coating on ECs and messenger RNA profiles in ECs were analyzed. It turned out that HSPGs could act as a mechanosensor to sense the change of fluid shear stress, modulate multiple EC gene expressions, and hence affect neovascularization. In summary, distraction from the stabilized state, such as decreased luminal shear stress, increased VEGF and the destructed mechanotransduction of HSPGs would induce the initiation of neovascularization. Our study highlights the key role of the magnitude and forms of shear stress in neovascularization.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0lc00493fDOI Listing

Publication Analysis

Top Keywords

shear stress
36
luminal shear
16
stress
9
initiation neovascularization
8
heparan sulfate
8
biomimetic microfluidic
8
microfluidic model
8
shear
8
forms shear
8
induced luminal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!