A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cholesterol Asymmetrically Modulates the Conformational Ensemble of the Nucleotide-Binding Domains of P-Glycoprotein in Lipid Nanodiscs. | LitMetric

AI Article Synopsis

  • P-Glycoprotein (P-gp) is an efflux pump that uses ATP to remove drugs and toxins from cells and shows structural variability even when bound to drugs.* -
  • Research aims to understand how cholesterol in the cell membrane affects P-gp’s shape and function, as it seems to influence ATP usage and the fluidity of the lipids.* -
  • Advanced techniques reveal that cholesterol causes significant changes in the way P-gp's nucleotide-binding domains behave, linking lipid composition with the protein’s activity and conformational states.*

Article Abstract

P-Glycoprotein (P-gp) is an ATP-dependent efflux pump that clears a wide variety of drugs and toxins from cells. P-gp undergoes large-scale structural changes and demonstrates conformational heterogeneity even within a single catalytic or drug-bound state, although the role of heterogeneity remains unclear. P-gp is found in a variety of cell types that vary in lipid composition, which modulates its activity. An understanding of structural or dynamic changes due to the lipid environment is lacking. We aimed to determine the effects of cholesterol in a membrane on the conformational behavior of P-gp in lipid nanodiscs. The presence of cholesterol stimulates ATP hydrolysis and alters lipid order and fluidity. Hydrogen/deuterium exchange mass spectrometry demonstrates that cholesterol in the membrane induces asymmetric, long-range changes in the distributions and exchange kinetics of conformations of the nucleotide-binding domains, correlating the effects of lipid composition on activity with specific changes in the P-gp conformational landscape.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.0c00824DOI Listing

Publication Analysis

Top Keywords

nucleotide-binding domains
8
lipid nanodiscs
8
lipid composition
8
cholesterol membrane
8
lipid
6
p-gp
5
cholesterol
4
cholesterol asymmetrically
4
asymmetrically modulates
4
conformational
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: