Particle shape has been described as a key factor in improving cell internalization and biodistribution among the different properties investigated for drug-delivery systems. In particular, tubular structures have been identified as promising candidates for improving drug delivery. Here, we investigate the influence of different design elements of cyclic peptide-polymer nanotubes (CPNTs) on cellular uptake including the nature and length of the polymer and the cyclic peptide building block. By varying the composition of these cyclic peptide-polymer conjugates, a library of CPNTs of lengths varying from a few to over a 150 nm were synthesized and characterized using scattering techniques (small-angle neutron scattering and static light scattering). In vitro studies with fluorescently labeled CPNTs have shown that nanotubes comprised of a single polymer arm with a size between 8 and 16 nm were the most efficiently taken up by three different mammalian cell lines. A mechanistic study on multicellular tumor spheroids has confirmed the ability of these compounds to penetrate to their core. Variations in the proportion of paracellular and transcellular uptake with the self-assembling potential of the CPNT were also observed, giving key insights about the behavior of CPNTs in cellular systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8243322PMC
http://dx.doi.org/10.1021/acs.biomac.0c01512DOI Listing

Publication Analysis

Top Keywords

cyclic peptide-polymer
12
cellular uptake
8
peptide-polymer nanotubes
8
cpnts cellular
8
comparative study
4
study cellular
4
uptake intracellular
4
intracellular behavior
4
behavior library
4
cyclic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!