This work reports exquisite engineering of catalytic activity of DNA-templated silver nanoclusters (DNA-AgNCs) based on unique adsorption phenomena of DNAs on DNA-AgNCs and reversible transition between double and triple-stranded DNAs. Four DNA homopolymers exhibit different inhibition effects on the catalytic activity of DNA-AgNCs, poly adenine (polyA) > poly guanine (polyG) > poly cytosine (polyC) > poly thymine (polyT), demonstrating that polyA strands have the strongest adsorption affinity on DNA-AgNCs. Through the formation of T-A•T triplex DNAs, catalytic activity of DNA-AgNCs is restored from the deactivated state by double or single-stranded DNAs, indicating the participation of N7 groups of adenine bases in binding to DNA-AgNCs and blocking active sites. Accordingly, reversibly regulating catalytic activity of DNA-AgNCs can be realized based on DNA input-stimulated transition between duplex and triplex structures. In the end, two low-cost and facile biosensing methods are presented, which are derived from the activity-switchable platform. It is worthy to anticipate that the DNA-AgNCs with controlled catalytic activity will inspire researchers to devise more functionalized nanocatalysts and contribute to the exploration of intelligent biomedicine in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202006553DOI Listing

Publication Analysis

Top Keywords

catalytic activity
24
activity dna-agncs
12
regulating catalytic
8
activity dna-templated
8
dna-templated silver
8
silver nanoclusters
8
dna-agncs
8
activity
6
catalytic
5
nanoclusters based
4

Similar Publications

The conversion of diluted CO₂ into high-energy fuels is increasingly central to renewable energy research. This study investigates the efficacy of a Gd₂NiMnO₆ dendritic nanofibrous (DNF) photocatalyst in transforming carbon dioxide to methane through photoreduction. Gd₂NiMnO₆ DNF was found to provide active adsorption sites and control the strand dimensions for metal groups, facilitating the chemical absorption of CO₂.

View Article and Find Full Text PDF

Hydroxy radical (•OH) is a prestigious oxidant that allows the cleavage of strong chemical bonds of methane but is untamed, leading to over-oxidation of methane and waste of oxidants, especially at high methane conversion. Here, we managed to buffer •OH in an aqueous solution of photo-irradiated Fe3+, where •OH almost participates in methane oxidation. Due to the interaction between Fe3+ and SO42-, the electron transfer from OH- to excited-state Fe3+ for •OH generation is retarded, while excessive •OH is consumed by generated Fe2+ to restore Fe3+.

View Article and Find Full Text PDF

Frontiers in laccase nanozymes-enabled colorimetric sensing: A review.

Anal Chim Acta

February 2025

Nanobiophotonics Department, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Strasse 9, 07745, Jena, Germany. Electronic address:

In recent years, nanozyme-based analytics have become popular. Among these, laccase nanozyme-based colorimetric sensors have emerged as simple and rapid colorimetric detection methods for various analytes, effectively addressing natural enzymes' stability and high-cost limitations. Laccase nanozymes are nanomaterials that exhibit inherent laccase enzyme-like activity.

View Article and Find Full Text PDF

Ligand engineering boosts catalase-like activity of gold nanoclusters for cascade reactions combined with glucose oxidase in ZIF-8 matrix.

Anal Chim Acta

February 2025

Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China. Electronic address:

Background: Integrating natural enzymes and nanomaterials exhibiting tailored enzyme-like activities is an effective strategy for the application of cascade reactions. It is essential to develop a highly efficient and robust glucose oxidase-catalase (GOx-CAT) cascade system featuring controllable enzyme activity, a reliable supply of oxygen, and improved stability for glucose depletion in cancer starvation therapy. However, the ambiguous relationship between structure and performance, and the difficulty in controlling enzyme-mimic activity, significantly hinder their broader application.

View Article and Find Full Text PDF

Turning waste into wealth: Enzyme-activated DNA sensor based on reactant recycle for spatially selective imaging microRNA toward target cells.

Anal Chim Acta

February 2025

Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou, 310003, China. Electronic address:

Background: Amplified imaging of microRNA (miRNA) in cancer cells is essential for understanding of the underlying pathological process. Synthetic catalytic DNA circuits represent pivotal tools for miRNA imaging. However, most existing catalytic DNA circuits can not achieve the reactant recycling operation in cells and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!