Enrichment and detection of circulating free nucleic acids in biological samples have gained great attention for disease diagnosis or prognostic evaluation. Nanoscale metal-organic frameworks (NMOFs) have been used for aptamer-based nucleic acid sensing. In this work, different NMOFs, including ZIF-8, MIL-88, MIL-100, MIL-101, as well as Eu-TDA and Tb-TDA [prepared by the coordination of 2,2'-thiodiacetic acid (TDA) and Eu or Tb], were investigated in nucleic acid sensing by employing their aptamer adsorption ability and fluorescence quenching capacity for the labeled dyes. Two types of dye aptamer, FAM-labeled aptamer (FAM-Ap) and TexasRedaptamer (TexasRed-Ap) were designed, and their adsorption properties on NMOFs-were compared. It was found that the TexasRed-Ap can be well used for nucleic acid (miR-21) extraction and sensing by linking with a pH-responsive nucleotide chain (TexasRed-Ap-pH) or with an additional random chain ssDNA-1' (TexasRed-Ap-a). After interacted with the target miR-21 in biosamples, the TexasRed-dsDNA + NMOFs composites can be collected, and the formed TexasRed-dsDNA can be released by changing pH value or addition of ssDNA-1, which is matched with ssDNA-1'. A linear relationship from 0.1 to 200 pM for miR-21 detection was obtained. The results show that the NMOFs can be used as promising platforms for nucleic acid extraction and fluorescent sensing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2020.112896 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!