Design, synthesis, and biological evaluation of benzo[d]imidazole-2-carboxamides as new anti-TB agents.

Bioorg Chem

Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062 Punjab, India; Department of Chemistry, Indian Institute of Technology - Ropar, Rupnagar, Punjab 140 001, India. Electronic address:

Published: February 2021

Tuberculosis is the leading cause of death globally among infectious diseases. Due to the development of resistance of Mycobacterium tuberculosis to currently used anti-TB medicines and the TB-HIV synergism the urgent need to develop novel anti-mycobacterial agents has been realized. The drug-to-target path has been the successful strategy for new anti-TB drug development. All the six drug candidates that have shown promise during the clinical trials and some of these being approved for treatment against MDR TB are the results of phenotype screening of small molecule compound libraries. In search of compounds belonging to novel pharmacophoric class that could be subjected to whole cell assay to generate new anti-TB leads the benzo[d]imidazole-2-carboxamide moiety has been designed as a novel anti-TB scaffold. The design was based on the identification of the benzimidazole ring as a prominent substructure of the FDA approved drugs, the structural analysis of reported anti-TB benzimidazoles, and the presence of the C-2 carboxamido functionality in novel bioisoteric anti-TB benzothiazoles. Twenty seven final compounds have been prepared via NHCl-catalyzed amidation of ethyl benzo[d]imidazole-2-carboxylates, as the required intermediates, obtained through a green "all water" one-pot synthetic route following a tandem N-arylation-reduction-cyclocondensation procedure. All of the synthesised target compounds were assessed for anti-TB potential using HRv ATCC27294 strain. Thirteen compounds were found with better MIC (0.78-6.25 µg/mL) than the standard drugs and being non-cytotoxic nature (<50% inhibition against RAW 264.7 cell lines at 50 µg/mL). The compound 8e exhibited best anti-TB activity (MIC: 2.15 µM and selectivity index: > 60) and a few others e.g., 8a, 8f, 8k and 8o are the next best anti-TB hits (MIC: 1.56 µg/mL). The determination and analysis of various physiochemical parameters revealed favorable druglike properties of the active compounds. The compounds 8a-l and 8o, with MIC values of ≤ 6.25 μg/mL, have high LipE values (10.66-11.77) that are higher than that of the suggested value of > 6 derived from empirical evidence for quality drug candidates and highlight their therapeutic potential. The highest LipE value of 11.77 of the best active compound 8e with the MIC of 0.78 μg/mL indicates its better absorption and clearance as a probable clinical candidate for anti-TB drug discovery. These findings highlight the discovery of benzimidazole-2-carboxamides for further development as new anti-TB agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2020.104538DOI Listing

Publication Analysis

Top Keywords

anti-tb
11
anti-tb agents
8
anti-tb drug
8
drug candidates
8
compounds
6
design synthesis
4
synthesis biological
4
biological evaluation
4
evaluation benzo[d]imidazole-2-carboxamides
4
benzo[d]imidazole-2-carboxamides anti-tb
4

Similar Publications

Host-directed therapies (HDTs) resolve excessive inflammation during tuberculosis (TB) disease, which leads to irreversible lung tissue damage. The peptide-based nanostructures possess intrinsic anti-inflammatory and antioxidant properties among HDTs. Native carnosine, a natural dipeptide with superior self-organization and functionalities, was chosen for nanoformulation.

View Article and Find Full Text PDF

Tuberculosis (TB) is a major health burden in Africa. Although TB is treatable, anti-TB drugs are associated with adverse drug reactions (ADRs), which are partly attributed to pharmacogenetic variation. The distribution of star alleles (haplotypes) influencing anti-TB drug metabolism is unknown in many African populations.

View Article and Find Full Text PDF

Dried blood spot (DBS) assays to quantify novel and repurposed drugs for the treatment of rifampicin-resistant tuberculosis (RR-TB) would facilitate pharmacokinetic studies and therapeutic drug monitoring in low-middle income settings, considering their ease of application and simple sample storage requirements. We describe a DBS method for the simultaneous quantification of bedaquiline and metabolite N-desmethyl bedaquiline, linezolid, levofloxacin, and clofazimine. The analytes were extracted from the matrix and isolated by solid-phase extraction.

View Article and Find Full Text PDF

The development of granulomas with central necrosis harboring Mycobacterium tuberculosis (Mtb) is the hallmark of human tuberculosis (TB). New anti-TB therapies need to effectively penetrate the cellular and necrotic compartments of these lesions and reach sufficient concentrations to eliminate Mtb. BTZ-043 is a novel antibiotic showing good bactericidal activity in humans in a phase IIa trial.

View Article and Find Full Text PDF

Background: Early and accurate diagnosis of drug resistance, including resistance to second-line anti-tuberculosis (TB) drugs, is crucial for the effective control and management of pre-extensively drug-resistant TB (pre-XDR-TB) and extensively drug-resistant TB (XDR-TB). The Xpert MTB/XDR assay is the WHO recommended method for detecting resistance to isoniazid and second-line anti-TB drugs when rifampicin resistance is detected. Currently, the Xpert MTB/XDR assay is not yet implemented in Ethiopia, thus the MTBDRsl assay continues to be used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!