Erratum.

Oncol Res

Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou, Guangdong ProvinceP.R. China.

Published: December 2020

Overexpression of the tumor necrosis factor receptor-associated factor 4 (TRAF4) has been detected in many cancer types and is considered to foster tumor progression. However, the role of TRAF4 in hepatocellular carcinoma (HCC) remains elusive. In this study, we found that TRAF4 was highly expressed in HCC cell lines and HCC tissues compared with normal liver cell lines and adjacent noncancerous tissues. TRAF4 overexpression in HCC tissues was correlated with tumor quantity and vascular invasion. In vitro studies showed that TRAF4 was associated with HCC cell migration and invasion. An in vivo study verified that TRAF4 overexpression facilitated metastasis in nude mice. In addition, overexpressed TRAF4 promoted the phosphorylation of Akt and induced Slug overexpression, leading to downregulated E-cadherin and upregulated vimentin, while silencing TRAF4 moderated the phosphorylation of Akt and repressed the expression of Slug, which resulted in upregulated E-cadherin and downregulated vimentin. These effects were inversed after pretreatment of the PI3K/Akt inhibitor LY294002 or overexpression of constitutively active Akt1. Our study demonstrated that TRAF4 was involved in promoting HCC cell migration and invasion. The process was induced by the EMT through activation of the PI3K/Akt signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7751229PMC
http://dx.doi.org/10.3727/096504020X16032056440102DOI Listing

Publication Analysis

Top Keywords

hcc cell
12
traf4
9
cell lines
8
hcc tissues
8
traf4 overexpression
8
cell migration
8
migration invasion
8
phosphorylation akt
8
hcc
6
erratum overexpression
4

Similar Publications

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

Introduction: 58 million people worldwide are chronically infected with hepatitis C virus (HCV) and are at risk of developing cirrhosis and hepatocellular carcinoma (HCC). Direct-acting antivirals are highly effective; however, they are burdened by high costs and the unchanged risk of HCC and reinfection, making prophylactic countermeasures an urgent medical need. HCV high genetic diversity is one of the main obstacles to vaccine development.

View Article and Find Full Text PDF

Background: Methyltransferase-like (METTL) family protein plays a crucial role in the progression of malignancies. However, the function of METTL17 across pan-cancers, especially in hepatocellular carcinoma (HCC) is still poorly understood.

Methods: All original data were downloaded from TCGA, GTEx, HPA, UCSC databases and various data portals.

View Article and Find Full Text PDF

Interaction of STIL with FOXM1 regulates SF3A3 transcription in the hepatocellular carcinoma development.

Cell Div

January 2025

Second Department of General Surgery, the First Hospital of Qiqihar, No. 700, Pukui avenue, Long sha District, Qiqihar, Heilongjiang, 161000, P. R. China.

Background: Dysregulation of SF3A3 has been related to the development of many cancers. Here, we investigated the functional role of SF3A3 in hepatocellular carcinoma (HCC).

Methods: SF3A3 expression in HCC tissues and cell lines was examined using RT-qPCR.

View Article and Find Full Text PDF

Background: As a member of the tumor necrosis factor (TNF) superfamily, tumor necrosis factor superfamily member 4 (TNFSF4) is expressed on antigen-presenting cells and activated T cells by binding to its receptor TNFRSF4. However, tumorigenicity of TNFSF4 has not been studied in pan-cancer. Therefore, comprehensive bioinformatics analysis of pan-cancer was performed to determine the mechanisms through which TNFSF4 regulates tumorigenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!