A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Analysis of heterogeneous genomic samples using image normalization and machine learning. | LitMetric

Analysis of heterogeneous genomic samples using image normalization and machine learning.

BMC Genomics

Department of Computer Science, Georgia State University, 25 Park Place NE, Atlanta, GA, 30303, USA.

Published: December 2020

Background: Analysis of heterogeneous populations such as viral quasispecies is one of the most challenging bioinformatics problems. Although machine learning models are becoming to be widely employed for analysis of sequence data from such populations, their straightforward application is impeded by multiple challenges associated with technological limitations and biases, difficulty of selection of relevant features and need to compare genomic datasets of different sizes and structures.

Results: We propose a novel preprocessing approach to transform irregular genomic data into normalized image data. Such representation allows to restate the problems of classification and comparison of heterogeneous populations as image classification problems which can be solved using variety of available machine learning tools. We then apply the proposed approach to two important problems in molecular epidemiology: inference of viral infection stage and detection of viral transmission clusters using next-generation sequencing data. The infection staging method has been applied to HCV HVR1 samples collected from 108 recently and 257 chronically infected individuals. The SVM-based image classification approach achieved more than 95% accuracy for both recently and chronically HCV-infected individuals. Clustering has been performed on the data collected from 33 epidemiologically curated outbreaks, yielding more than 97% accuracy.

Conclusions: Sequence image normalization method allows for a robust conversion of genomic data into numerical data and overcomes several issues associated with employing machine learning methods to viral populations. Image data also help in the visualization of genomic data. Experimental results demonstrate that the proposed method can be successfully applied to different problems in molecular epidemiology and surveillance of viral diseases. Simple binary classifiers and clustering techniques applied to the image data are equally or more accurate than other models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7751093PMC
http://dx.doi.org/10.1186/s12864-020-6661-6DOI Listing

Publication Analysis

Top Keywords

machine learning
16
genomic data
12
image data
12
data
10
analysis heterogeneous
8
image normalization
8
heterogeneous populations
8
populations image
8
image classification
8
problems molecular
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!