Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We focus on exploring the LIDAR-RGB fusion-based 3D object detection in this paper. This task is still challenging in two aspects: (1) the difference of data formats and sensor positions contributes to the misalignment of reasoning between the semantic features of images and the geometric features of point clouds. (2) The optimization of traditional IoU is not equal to the regression loss of bounding boxes, resulting in biased back-propagation for non-overlapping cases. In this work, we propose a cascaded cross-modality fusion network (CCFNet), which includes a cascaded multi-scale fusion module (CMF) and a novel center 3D IoU loss to resolve these two issues. Our CMF module is developed to reinforce the discriminative representation of objects by reasoning the relation of corresponding LIDAR geometric capability and RGB semantic capability of the object from two modalities. Specifically, CMF is added in a cascaded way between the RGB and LIDAR streams, which selects salient points and transmits multi-scale point cloud features to each stage of RGB streams. Moreover, our center 3D IoU loss incorporates the distance between anchor centers to avoid the oversimple optimization for non-overlapping bounding boxes. Extensive experiments on the KITTI benchmark have demonstrated that our proposed approach performs better than the compared methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766807 | PMC |
http://dx.doi.org/10.3390/s20247243 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!