Pervaporative Dehydration of Methanol Using PVA/Nanoclay Mixed Matrix Membranes: Experiments and Modeling.

Membranes (Basel)

Environmental and Process Engineering Research Group, Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1521 Budapest, Hungary.

Published: December 2020

Encouraged by the industrial problem of removing water from methanol solutions, a simple exfoliation method is applied to prepare polyvinyl alcohol (PVA)/laponite nanoclay mixed matrix membranes (MMMs). The membranes are used for the pervaporative dehydration of the methanol-water solution. The influence of the nanoclay content on the pervaporation performance is investigated. The results show that the PVA10 membrane containing 10 wt% Laponite loading exhibits excellent separation efficiency; therefore, all the experimental work is continued using the same membrane. Additionally, the effects of feed concentration and temperature on methanol dehydration performance are thoroughly investigated. The temperatures are ranging from 40-70 °C and the water feed concentrations from 1-15 wt% water. A maximum separation factor of 1120 can be observed at 40 °C and the feed water concentration of 1 wt%. Remarkably, two solution-diffusion models, the Rautenbach (Model I) and modified method by Valentínyi et al. (Model II), are used and compared to evaluate and describe the pervaporation performance of the mixed matrix membrane. Model II proves to be more appropriate for the modeling of pervaporative dehydration of methanol than Model I. This work demonstrates that PVA/nanoclay mixed matrix membranes prepared can efficiently remove water from methanol aqueous solution with pervaporation and the whole process can be accurately modeled with Model II.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766437PMC
http://dx.doi.org/10.3390/membranes10120435DOI Listing

Publication Analysis

Top Keywords

mixed matrix
16
pervaporative dehydration
12
matrix membranes
12
dehydration methanol
8
pva/nanoclay mixed
8
water methanol
8
pervaporation performance
8
methanol
5
water
5
model
5

Similar Publications

Mitigating matrix effects in oil and gas wastewater analysis: LC-MS/MS method for ethanolamines.

Environ Sci Process Impacts

January 2025

Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.

The high salinity and organic content in oil and gas wastewaters can cause ion suppression during liquid chromatography mass spectrometry (LC/MS) analysis, diminishing the sensitivity and accuracy of measurements in available methods. This suppression is severe for low molecular weight organic compounds such as ethanolamines (, monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), -methyldiethanolamine (MDEA), and ,-ethyldiethanolamine (EDEA)). Here, we deployed solid phase extraction (SPE), mixed-mode LC, triple quadrupole MS with positive electrospray ionization (ESI), and a suite of stable isotope standards (, one per target compound) to correct for ion suppression by salts and organic matter, SPE losses, and instrument variability.

View Article and Find Full Text PDF

Background/purpose: Titanium (Ti) is extensively used in dental and orthopedic implants due to its excellent mechanical properties. However, its smooth and biologically inert surface does not support the ingrowth of new bone, and Ti ions may have adverse biological effects. The purpose is to improve the corrosion resistance of titanium and create a 3D structured coating to enhance osseointegration through a very simple and fast surface treatment.

View Article and Find Full Text PDF

Defective MOFs have been identified as promising candidates for efficient membrane-based separation applications. However, the utilization of defective MOFs in membrane gas separation is still in its infancy due primarily to the inefficient molecular differentiation induced by structural defects. Herein, we report a strategic combination of ionic liquid (IL) and defective UiO-66-NH MOF to ameliorate the CO/N selectivity within the highly permeable PIM-1 polymer.

View Article and Find Full Text PDF

Pooled microarray expression analysis of failing left ventricles reveals extensive cellular-level dysregulation independent of age and sex.

J Mol Cell Cardiol Plus

March 2024

National Coalition of Independent Scholars, 125 Putney Road, Battleboro, VT 05301, United States.

Existing cardiovascular studies tend to suffer from small sample sizes and unaddressed confounders. Re-profiling of 9 microarray datasets revealed significant global gene expression differences between 358 failing and 191 non-failing left ventricles independent of age and sex ( = 5.1e-10).

View Article and Find Full Text PDF

Fish scale gelatin/diatom biosilica composite hemostasis sponge with ultrafast dispersing and in situ gelation for hemorrhage control.

Int J Biol Macromol

January 2025

College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Floor 7, Building 1, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya, Hainan Province, China. Electronic address:

Rapid control of hemorrhage is vital in first-aid and surgery. As representative of emergency hemostatic materials, inorganic porous materials achieve rapid hemostasis through concentrating protein coagulation factors by water adsorption to accelerate the coagulation reaction process, however their efficacy is often limited by the insufficient contact of material with blood and the lack of blood clot strength. Herein, we report an ultrafast dispersing and in situ gelation sponge (SG/DB) based on anchoring interface effect for hemorrhage control using freeze drying method after mixing fish scale gel (SG) and tert-butyl alcohol (TBA) pre-crystallized diatom biosilica (DB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!