AI Article Synopsis

Article Abstract

Vertical jump is a valuable training, testing, and readiness monitoring tool used across a multitude of sport settings. However, accurate field analysis has not always been readily available or affordable. For this study, two-dimensional motion capture (Mo-Cap), G-Flight micro-sensor, and PUSH accelerometer technologies were compared to a research-grade force-plate. Twelve healthy university students (7 males, 5 females) volunteered for this study. Each participant performed squat jumps, countermovement jumps, and drop jumps on three separate occasions. Between-device differences were determined using a one-way repeated measures ANOVA. Systematic bias was determined by limits of agreement using Bland-Altman analysis. Variability was examined via the coefficient of variation, interclass correlation coefficient, and typical error of measure. Dependent variables included jump height, contact-time, and reactive strength index (RSI). Mo-Cap held the greatest statistical similarity to force-plates, only overestimating contact-time (+12 ms). G-Flight (+1.3-4 cm) and PUSH (+4.1-4.5 cm) consistently overestimate jump height, while PUSH underestimates contact-time (-24 ms). Correspondingly, RSI was the most valid metric across all technologies. All technologies held small to moderate variably; however, variability was greatest with the G-Flight. While all technologies are practically implementable, practitioners may want to consider budget, athlete characteristics, exercise demands, set-up, and processing time before purchasing the most appropriate equipment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7767135PMC
http://dx.doi.org/10.3390/s20247240DOI Listing

Publication Analysis

Top Keywords

vertical jump
8
jump height
8
technologies
5
concurrent validity
4
validity reliability
4
reliability three
4
three ultra-portable
4
ultra-portable vertical
4
jump
4
jump assessment
4

Similar Publications

Background: : Neuromuscular re-education has focused on improving motor activities in patients with pathologies by retraining the nervous system. However, this has not yet been investigated in healthy individuals. Voluntary isometric contractions at maximal muscle shortening (VICAMS) is a new technique with the same objective.

View Article and Find Full Text PDF

Algorithmic Audits in Sports Medicine: An Examination of the SpartaScienceTM Force Plate System.

Med Sci Sports Exerc

November 2024

Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, VA.

Introduction: Force plate systems are increasingly utilized in the armed forces that claim to identify individuals at risk of musculoskeletal injury. However, factors influencing injury risk scores from a force plate system (SpartaScienceTM), and the effects of experimental perturbations on these scores, remain unclear.

Methods: Healthy males (n = 823; 22.

View Article and Find Full Text PDF

Philipp, NM, Blackburn, SD, Cabarkapa, D, and Fry, AC. The effects of a low-volume, high-intensity pre-season micro-cycle on neuromuscular performance in collegiate female basketball players. J Strength Cond Res 38(12): 2136-2146, 2024-The use of stretch-shortening cycle (SSC)-based measures of vertical jump performance to monitor responses to training exposures is common practice in sport science.

View Article and Find Full Text PDF

Kember, LS, Riehm, CD, Schille, A, Slaton, JA, Myer, GD, and Lloyd, RS. Residual biomechanical deficits identified with the tuck jump assessment in female athletes 9 months after ACLR surgery. J Strength Cond Res 38(12): 2065-2073, 2024-Addressing biomechanical deficits in female athletes after anterior cruciate ligament reconstruction (ACLR) is crucial for safe return-to-play.

View Article and Find Full Text PDF

Kember, LS, Riehm, CD, Schille, A, Slaton, JA, Myer, GD, and Lloyd, RS. Residual biomechanical deficits identified with the tuck jump assessment in female athletes 9 months after ACLR surgery. J Strength Cond Res XX(X): 000-000, 2024-Addressing biomechanical deficits in female athletes after anterior cruciate ligament reconstruction (ACLR) is crucial for safe return-to-play.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!