Ammonia removal from thermal hydrolysis dewatering liquors via three different deammonification technologies.

Sci Total Environ

Cranfield University, College Road, Cranfield, Bedford MK43 0AL, United Kingdom. Electronic address:

Published: February 2021

The benefits of deammonification to remove nitrogen from sidestreams, i.e., sludge dewatering liquors, in municipal wastewater treatment plants are well accepted. The ammonia removal from dewatering liquors originated from thermal hydrolysis/anaerobic digestion (THP/AD) are deemed challenging. Many different commercial technologies have been applied to remove ammonia from sidestreams, varying in reactor design, biomass growth form and instrumentation and control strategy. Four technologies were tested (a deammonification suspended sludge sequencing batch reactor (S-SBR), a deammonification moving bed biofilm reactor (MEDIA), a deammonification granular sludge sequencing batch reactor (G-SBR), and a nitrification suspended sludge sequencing batch reactor (N-SBR)). All technologies relied on distinct control strategies that actuated on the feed flow leading to a range of different ammonia loading rates. Periods of poor performance were displayed by all technologies and related to imbalances in the chain of deammonification reactions subsequently effecting both load and removal. The S-SBR was most robust, not presenting these imbalances. The S-SBR and G-SBR presented the highest nitrogen removal rates (NRR) of 0.58 and 0.56 kg N m d, respectively. The MEDIA and the N-SBR presented an NRR of 0.17 and 0.07 kg N m d, respectively. This study demonstrated stable ammonia removal from THP/AD dewatering liquors and did not observe toxicity in the nitrogen removal technologies tested. It was identified that instrumentation and control strategy was the main contributor that enabled higher stability and NRR. Overall, this study provides support in selecting a suitable biological nitrogen removal technology for the treatment of sludge dewatering liquors from THP/AD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.142684DOI Listing

Publication Analysis

Top Keywords

dewatering liquors
20
ammonia removal
12
sludge sequencing
12
sequencing batch
12
batch reactor
12
nitrogen removal
12
sludge dewatering
8
instrumentation control
8
control strategy
8
technologies tested
8

Similar Publications

Leaching behavior of microplastics during sludge mechanical dewatering and its effect on activated sludge.

Water Res

November 2024

School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China. Electronic address:

Dewatering is an indispensable link in sludge treatment, but its effect on the microplastics (MPs) remains inadequately understood. This study investigated the physicochemical changes and leaching behavior of MPs during the mechanical dewatering of sludge, as well as the impact of MP leachates on activated sludge (AS). After sludge dewatering, MPs exhibit rougher surfaces, decreased sizes and altered functional groups due to the addition of dewatering agents and the application of mechanical force.

View Article and Find Full Text PDF

An innovative circular economy (CE) system was implemented at the wastewater treatment plant (WWTP) in Brunswick. The performance of the CE system was evaluated for 4 years: the thermal pressure hydrolysis enhanced the methane production by 18% and increased the digestate dewaterability by 14%. Refractory COD formed in thermal hydrolysis and increased the COD concentration in the WWTP effluent by 4 mg L while still complying with the legal threshold.

View Article and Find Full Text PDF

Food waste anaerobic digestate (FWAD) containing high concentrations of contaminants must be purified or recycled. Bio-conditioning dewatering followed by activated sludge process (BDAS) has emerged as a promising technology for treating FWAD. However, the bio-conditioning dewatering as a pivotal step of BDAS is often negatively affected by low ambient temperatures often occurred in winter.

View Article and Find Full Text PDF

Bio-conditioning dewatering followed by activated sludge process (BDAS) is a promising technology for purifying food waste anaerobic digestate (FWAD). However, the bio-conditioning dewatering efficiency is often affected by FWAD properties and ambient temperature. Here, we firstly reported that aeration pre-treatment of FWAD played an important role in improving the bio-conditioning dewatering performance of FWAD.

View Article and Find Full Text PDF

Variation of the digester temperature during the year enables the operation of digesters as seasonal heat storage contributing to a holistic heat management at water resource recovery facilities. Full- and lab-scale process data were conducted to examine the effect of the digester temperature on process stability, sludge liquor quality, and dewaterability. Both full- and lab-scale digesters show a stable anaerobic degradation process with a hydraulic retention time of more than 20 days and organic load rates up to 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!