An increasing number of research shows that long non-coding RNA plays a key role in many important biological processes. However, the number of disease-related lncRNAs found by researchers remains relatively small, and experimental identification is time consuming and labor intensive. In this study, we propose a novel method, namely HAUBRW, to predict undiscovered lncRNA-disease associations. First, the hybrid algorithm, which combines the heat spread algorithm and the probability diffusion algorithm, redistributes the resources. Second, unbalanced bi-random walk, is used to infer undiscovered lncRNA disease associations. Seven advanced models, i.e. BRWLDA, DSCMF, RWRlncD, IDLDA, KATZ, Ping's, and Yang's were compared with our method, and simulation results show that the AUC of our method is more perfect than the other models. In addition, case studies have shown that HAUBRW can effectively predict candidate lncRNAs for breast, osteosarcoma and cervical cancer. Therefore, our approach may be a good choice in future biomedical research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2020.08.024DOI Listing

Publication Analysis

Top Keywords

hybrid algorithm
8
unbalanced bi-random
8
bi-random walk
8
lncrna-disease associations
8
haubrw hybrid
4
algorithm
4
algorithm unbalanced
4
walk predicting
4
predicting lncrna-disease
4
associations increasing
4

Similar Publications

CDCG-UNet: Chaotic Optimization Assisted Brain Tumor Segmentation Based on Dilated Channel Gate Attention U-Net Model.

Neuroinformatics

January 2025

Department of Information Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram, Chennai, 600089, India.

Brain tumours are one of the most deadly and noticeable types of cancer, affecting both children and adults. One of the major drawbacks in brain tumour identification is the late diagnosis and high cost of brain tumour-detecting devices. Most existing approaches use ML algorithms to address problems, but they have drawbacks such as low accuracy, high loss, and high computing cost.

View Article and Find Full Text PDF

Background: Breast cancer (BC), as a leading cause of cancer mortality in women, demands robust prediction models for early diagnosis and personalized treatment. Artificial Intelligence (AI) and Machine Learning (ML) algorithms offer promising solutions for automated survival prediction, driving this study's systematic review and meta-analysis.

Methods: Three online databases (Web of Science, PubMed, and Scopus) were comprehensively searched (January 2016-August 2023) using key terms ("Breast Cancer", "Survival Prediction", and "Machine Learning") and their synonyms.

View Article and Find Full Text PDF

A hybrid human fall detection method based on modified YOLOv8s and AlphaPose.

Sci Rep

January 2025

Human-Computer Collaborative Robot Joint Laboratory of Anhui Province, Huainan, China.

To address the challenges of low detection accuracy of small objects and weak applicability of the multi-person fall action recognition applications, we propose a hybrid fall detection method based on modified YOLOv8s and AlphaPose called HFDMIA-Pose. Firstly, we use the modified Yolov8s as object detector. It uses SPD-Conv to preserve small object features and adds a small object detection layer, while using BCIOU as the loss function.

View Article and Find Full Text PDF

Drug development is known to be a costly and time-consuming process, which is prone to high failure rates. Drug repurposing allows drug discovery by reusing already approved compounds. The outcomes of past clinical trials can be used to predict novel drug-disease associations by leveraging drug- and disease-related similarities.

View Article and Find Full Text PDF

Infrared absorption spectroscopy and surface-enhanced Raman spectroscopy were integrated into three data fusion strategies-hybrid (concatenated spectra), mid-level (extracted features from both datasets) and high-level (fusion of predictions from both models)-to enhance the predictive accuracy for xylazine detection in illicit opioid samples. Three chemometric approaches-random forest, support vector machine, and -nearest neighbor algorithms-were employed and optimized using a 5-fold cross-validation grid search for all fusion strategies. Validation results identified the random forest classifier as the optimal model for all fusion strategies, achieving high sensitivity (88% for hybrid, 92% for mid-level, and 96% for high-level) and specificity (88% for hybrid, mid-level, and high-level).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!