The effects of solution-state dielectric and intermolecular interactions on the degree of charge separation provide a route to understanding the switching properties and concentration dependence of donor-acceptor Stenhouse adducts (DASAs). Through solvatochromic analysis of the open-form DASA in conjunction with X-ray diffraction and computational theory, we have analyzed the ionic character of a series of DASAs. First- and third-generation architectures lead to a higher zwitterionic resonance contribution of the open form and a zwitterionic closed form, whereas the second-generation architecture possesses a less charge-separated open form and neutral closed form. This can be correlated with equilibrium control and photoswitching solvent compatibility. As a result of the high contribution of the zwitterionic resonance forms of first- and third-generation DASAs, we were able to control their switching kinetics by means of ion concentration, whereas second-generation DASAs were less affected. Importantly, these results show how the previously reported concentration dependence of DASAs is not universal, and that DASAs with a more hybrid structure in the open form can achieve photoswitching at high concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202005110DOI Listing

Publication Analysis

Top Keywords

open form
12
donor-acceptor stenhouse
8
stenhouse adducts
8
ionic character
8
concentration dependence
8
first- third-generation
8
zwitterionic resonance
8
closed form
8
dasas
6
form
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!