A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Efficient removal of cationic dyes via activated carbon with ultrahigh specific surface derived from vinasse wastes. | LitMetric

Efficient removal of cationic dyes via activated carbon with ultrahigh specific surface derived from vinasse wastes.

Bioresour Technol

School of Materials Science and Engineering, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Park, Hangzhou 310018, China.

Published: February 2021

In this work, a simple and feasible approach for converting waste vinasse generated from the alcohol industries into high value-added activated carbon (AC) was proposed. The obtained AC possessed abundant micropores with micropore volume of 0.9613 cm/g and ultrahigh specific surface areas (2015 m/g), indicating prominent adsorption capacity. The adsorption ability of AC to cationic methylene blue (MB) was investigated systematically. The resultant AC exhibited superior adsorption ability to MB with a maximum amount of 2251 mg/g, derived from its excellent pore textural features and abundant surface O-containing functional groups. Moreover, AC showed excellent removal efficiency for treating industrial polyacrylonitrile wastewater with 99% removal within 60 min. Our results provide great inspirations in solid waste treatment and their high value-added transformation, meanwhile exploit a promising application of AC for practical wastewater purification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2020.124540DOI Listing

Publication Analysis

Top Keywords

activated carbon
8
ultrahigh specific
8
specific surface
8
high value-added
8
adsorption ability
8
efficient removal
4
removal cationic
4
cationic dyes
4
dyes activated
4
carbon ultrahigh
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!