Modeling mammalian trunk development in a dish.

Dev Biol

Dept. of Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195, Berlin, Germany; Institute for Medical Genetics, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany. Electronic address:

Published: June 2021

Mammalian post-implantation development comprises the coordination of complex lineage decisions and morphogenetic processes shaping the embryo. Despite technological advances, a comprehensive understanding of the dynamics of these processes and of the self-organization capabilities of stem cells and their descendants remains elusive. Building synthetic embryo-like structures from pluripotent embryonic stem cells in vitro promises to fill these knowledge gaps and thereby may prove transformative for developmental biology. Initial efforts to model the post-implantation embryo resulted in structures with compromised morphology (gastruloids). Recent approaches employing modified culture media, an extracellular matrix surrogate or extra-embryonic stem cells, however, succeeded in establishing embryo-like architecture. For example, embedding of gastruloids in Matrigel unlocked self-organization into trunk-like structures with bilateral somites and a neural tube-like structure, together with gut tissue and primordial germ cell-like cells. In this review, we describe the currently available models, discuss how these can be employed to acquire novel biological insights, and detail the imminent challenges for improving current models by in vitro engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2020.12.015DOI Listing

Publication Analysis

Top Keywords

stem cells
12
modeling mammalian
4
mammalian trunk
4
trunk development
4
development dish
4
dish mammalian
4
mammalian post-implantation
4
post-implantation development
4
development comprises
4
comprises coordination
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!