The asparaginase II pathway consists of an asparagine transaminase [l-asparagine + α-keto acid ⇆ α-ketosuccinamate + l-amino acid] coupled to ω-amidase [α-ketosuccinamate + HO → oxaloacetate + NH]. The net reaction is: l-asparagine + α-keto acid + HO → oxaloacetate + l-amino acid + NH. Thus, in the presence of a suitable α-keto acid substrate, the asparaginase II pathway generates anaplerotic oxaloacetate at the expense of readily dispensable asparagine. Several studies have shown that the asparaginase II pathway is important in photorespiration in plants. However, since its discovery in rat tissues in the 1950s, this pathway has been almost completely ignored as a conduit for asparagine metabolism in mammals. Several mammalian transaminases can catalyze transamination of asparagine, one of which - alanine-glyoxylate aminotransferase type 1 (AGT1) - is important in glyoxylate metabolism. Glyoxylate is a precursor of oxalate which, in the form of its calcium salt, is a major contributor to the formation of kidney stones. Thus, transamination of glyoxylate with asparagine may be physiologically important for the removal of potentially toxic glyoxylate. Asparaginase has been the mainstay treatment for certain childhood leukemias. We suggest that an inhibitor of ω-amidase may potentiate the therapeutic benefits of asparaginase treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2020.114084 | DOI Listing |
Prep Biochem Biotechnol
December 2024
Post Graduate Department of Biosciences & Biotechnology, Fakir Mohan University, Balasore, Odisha, India.
Sorbitol, known as D-Glucitol, is a hexose sugar alcohol that occurs naturally in various fruits, including berries, cherries, plums, pears, and apples. It is noteworthy that sorbitol can be metabolized by microbes, plants, and humans through distinct pathways. Nevertheless, in bacteria like (), sorbitol is not the primary carbon source and its utilization is generally suppressed due to carbon catabolite repression.
View Article and Find Full Text PDFEur J Pharm Sci
January 2025
Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands.
Dexamethasone is crucial in pediatric acute lymphoblastic leukemia (ALL) treatment, however, studies regarding the pharmacokinetics of dexamethasone and its metabolites are scarce. Our study conducted a comprehensive pharmacokinetic-pharmacodynamic analysis of dexamethasone and metabolite, examining their association with dexamethasone-induced toxicity. Peak and trough concentrations were collected during the maintenance phase from pediatric ALL patients who received oral dexamethasone (6mg/m2/day).
View Article and Find Full Text PDFRapid and comprehensive analysis of complex proteomes across large sample sets is vital for unlocking the potential of systems biology. We present UFP-MS, an ultra-fast mass spectrometry (MS) proteomics method that integrates narrow-window data-independent acquisition (nDIA) with short-gradient micro-flow chromatography, enabling profiling of >240 samples per day. This optimized MS approach identifies 6,201 and 7,466 human proteins with 1- and 2-min gradients, respectively.
View Article and Find Full Text PDFCancers (Basel)
August 2024
Division of Surgical Oncology, Department of Surgery, University of California Los Angeles, 10833 Le Conte Ave, 54-117, Los Angeles, CA 90095, USA.
Cancer Lett
November 2024
Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic; University Hospital Motol, Prague, Czech Republic. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!