Achromatium is a long known uncultured giant gammaproteobacterium forming intracellular CaCO that impacts C and S geochemical cycles functioning in some anoxic sediments and at oxic-anoxic boundaries. While intracellular CaCO granules have first been described as Ca oxalate then colloidal CaCO more than one century ago, they have often been referred to as crystalline solids and more specifically calcite over the last 25 years. Such a crystallographic distinction is important since the respective chemical reactivities of amorphous calcium carbonate (ACC) and calcite, hence their potential physiological role and conditions of formation, are significantly different. Here, we analyzed the intracellular CaCO granules of Achromatium cells from Lake Pavin using a combination of Raman microspectroscopy and scanning electron microscopy. Granules in intact Achromatium cells were unequivocally composed of ACC. Moreover, ACC spontaneously transformed into calcite when irradiated at high laser irradiance during Raman analyses. Few ACC granules also transformed spontaneously into calcite in lysed cells upon cell death and/or sample preparation. Overall, the present study supports the original claims that intracellular Ca-carbonates in Achromatium are amorphous and not crystalline. In that sense, Achromatium is similar to a diverse group of Cyanobacteria and a recently discovered magnetotactic alphaproteobacterium, which all form intracellular ACC. The implications for the physiology and ecology of Achromatium are discussed. Whether the mechanisms responsible for the preservation of such unstable compounds in these bacteria are similar to those involved in numerous ACC-forming eukaryotes remains to be discovered. Last, we recommend to future studies addressing the crystallinity of CaCO granules in Achromatium cells recovered from diverse environments all over the world to take care of the potential pitfalls evidenced by the present study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gbi.12424 | DOI Listing |
Eur J Pharm Biopharm
December 2024
School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China. Electronic address:
Oral delivery of peptide drugs remains one of the most formidable challenges in the frontier of pharmaceutical research. Peptide drugs typically suffer from exceptionally low oral bioavailability, primarily attributed to rigorous enzymatic degradation within the gastrointestinal (GI) tract, limited ability to traverse the enterocyte barrier, and significant first-pass hepatic metabolism. Absorption of peptide drugs via the lymphatic route could potentially bypass intracellular lysosome degradation and hepatic first-pass metabolism.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González 2, 41012 Seville, Spain.
Anatoxin-a (ATX-a) is a cyanotoxin whose toxicological profile has been underinvestigated in comparison to other cyanotoxins such as microcystins (MCs) or cylindrospermopsin (CYN). However, its wide distribution, occurrence, and toxic episodes justify more attention. It is classified as a neurotoxin, but it has also been reported to affect other organs and systems.
View Article and Find Full Text PDFWei Sheng Yan Jiu
November 2024
West China School of Public Health, Sichuan University, Chengdu 610041, China.
Objective: To explore the possible mechanism of absorption of iron oxide nanoparticles into the human body through the gastrointestinal tract.
Methods: This article used Caco-2 monolayer cells as a cell model, prepared characterized iron oxide nanoparticles(Fe_2O_3 NPs) as suspensions, and intervened in Caco-2 cells. CCK-8 method, transwell method, and atomic spectrophotometer method were used to explore the effect of Fe_2O_3 NPs on the activity of Caco-2 cells and the absorption and transport of them through the Caco-2 monolayer cell model.
Food Chem
December 2024
College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, PR China. Electronic address:
Improving sea buckthorn flavonoids (SF) stability and bioacccessibility is of more practical significance for evaluating the total bioacccessibility of such foods. Therefore, we prepared nanoparticles using zein and gum Arabic (GA) by anti-solvent precipitation to encapsulate SF. Nanoparticles were characterized and assessed for their effect on the stability, release, bioaccessibility, absorption, and antioxidant properties of SF in the in vitro digestion and cell line.
View Article and Find Full Text PDFCell Biosci
December 2024
Division of Neuroscience, Dept. of Psychology, University La Sapienza, Via dei Sardi 70, 00185, Rome, Italy.
Background: The Niemann Pick C1 (NPC1) protein is an intracellular cholesterol transporter located in the late endosome/lysosome (LE/Ly) that is involved in the mobilization of endocytosed cholesterol. Loss-of-function mutations in the NPC1 gene lead to the accumulation of cholesterol and sphingolipids in LE/Ly, resulting in severe fatal NPC1 disease. Cellular alterations associated with NPC1 inactivation affect both the integrity of lipid rafts and the endocytic pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!