Capparis odoratissima is a tree species native to semi-arid environments of South America where low soil water availability coexists with frequent night-time fog. A previous study showed that water applied to leaf surfaces enhanced leaf hydration, photosynthesis and growth, but the mechanisms of foliar water uptake are unknown. Here, we combine detailed anatomical evaluations with water and dye uptake experiments in the laboratory, and use immunolocalization of pectin and arabinogalactan protein epitopes to characterize water uptake pathways in leaves. Abaxially, the leaves of C. odoratissima are covered with peltate hairs, while the adaxial surfaces are glabrous. Both surfaces are able to absorb condensed water, but the abaxial surface has higher rates of water uptake. Thousands of idioblasts per cm , a higher density than stomata, connect the adaxial leaf surface and the abaxial peltate hairs, both of which contain hygroscopic substances such as arabinogalactan proteins and pectins. The highly specialized anatomy of the leaves of C odoratissima fulfils the dual function of minimizing water loss when stomata are closed, while maintaining the ability to absorb liquid water. Cell-wall related hygroscopic compounds in the peltate hairs and idioblasts create a network of microchannels that maintain leaf hydration and promote water uptake.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.13985 | DOI Listing |
Dev Cell
February 2023
College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:
Hair-like structures are shared by most living organisms. The hairs on plant surfaces, commonly referred to as trichomes, form diverse types to sense and protect against various stresses. However, it is unclear how trichomes differentiate into highly variable forms.
View Article and Find Full Text PDFMolecules
January 2023
School of Chemical Engineering & Physics Laboratory, Faculty of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
A novel, inexpensive and simple experimental setup for collecting -Raman spectra of volatile liquids in very small quantities was developed. It takes advantage of capillary forces to detain minute volatile liquid volumes. Spectra of volatile and even scattering or absorbing media can be measured more effectively.
View Article and Find Full Text PDFPlanta Med
April 2023
Laboratory of Systematic Botany and Phytogeography, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
The two types of oregano used by the inhabitants of the villages of Μount Belles (GR1260001), the "white" oregano with white flowers and "black" oregano with purple flowers, were studied. The two oregano types were collected from five localities along an altitudinal gradient from 217 m up to 1299 m. "White" oregano, was found in the three lowland regions (up to 752 m) where the Pannonian-Balkanic turkey oak-sessile oak forest habitat (code 91M0) dominates.
View Article and Find Full Text PDFPlant Cell Environ
May 2021
Department of Organismic and Evolutionary Biology, Cambridge, Massachusetts, USA.
Capparis odoratissima is a tree species native to semi-arid environments of South America where low soil water availability coexists with frequent night-time fog. A previous study showed that water applied to leaf surfaces enhanced leaf hydration, photosynthesis and growth, but the mechanisms of foliar water uptake are unknown. Here, we combine detailed anatomical evaluations with water and dye uptake experiments in the laboratory, and use immunolocalization of pectin and arabinogalactan protein epitopes to characterize water uptake pathways in leaves.
View Article and Find Full Text PDFFront Plant Sci
March 2020
Department of Plant Anatomy, ELTE Eötvös Loránd University, Budapest, Hungary.
It is unclear whether light affects the structure and activity of exogenous secretory tissues like glandular hairs. Therefore, transmission electron microscopy was first used to study plastid differentiation in glandular hairs and leaves of light-grown rosemary ( "Arp") plants kept for 2 weeks under ambient light conditions. During our detailed analyses, among others, we found leucoplasts with tubuloreticular membrane structures resembling prolamellar bodies in stalk cell plastids of peltate glandular hairs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!