The combination of antiangiogenesis and chemotherapy regimens with cancer immunotherapy has the potential to synergistically boost antitumor immunity. Herein, we report the construction of two bioresponsive nanoparticles, namely, Podo-NP and CbP-NP, comprising prodrugs of podophyllotoxin (Podo) and carboplatin, respectively. Sequential treatment with esterase-responsive Podo-NP, redox-sensitive CbP-NP, and a CD40 agonist promotes antitumor T cell response. Podo-NP suppresses angiogenesis by preventing proliferation and migration of endothelial cells, sprouting of neovessels, formation of tubules, and stabilization of newly formed vessels. Vascular endothelial growth factor blockade and endostatin stimulation normalize tortuous tumor vasculatures to allow efficient infiltration of effector immune cells. Subsequent treatment with CbP-NP arrests the cell-division cycle and elicits the apoptosis of tumor cells. CD40 agonist activates antigen-presenting cells to process the released tumor-associated antigens from dying tumor cells, thus reversing immunosuppressive tumor microenvironments. Sequential delivery of antiangiogenic and chemotherapeutic agents with bioresponsive NPs activates tumor microenvironments and synergizes with CD40 agonist to regress transplanted tumors and inhibit disseminated tumors in a lung cancer mouse model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216770PMC
http://dx.doi.org/10.1021/acsnano.0c07132DOI Listing

Publication Analysis

Top Keywords

cd40 agonist
16
sequential treatment
8
bioresponsive nanoparticles
8
synergizes cd40
8
antitumor immunity
8
tumor cells
8
tumor microenvironments
8
cells
5
tumor
5
treatment bioresponsive
4

Similar Publications

Deficiency of the V-domain immunoglobulin suppressor of T-cell activation (VISTA) accelerates disease progression in lupus-prone mice, and activation of VISTA shows therapeutic effects in mouse models of a lupus-like disease. Metabolic reprogramming of T cells in systemic lupus erythematosus (SLE) patients is important in regulating T-cell function and disease progression. However, the mechanism by which VISTA affects the immunometabolism in SLE remains unclear.

View Article and Find Full Text PDF

Enhanced safety and efficacy profile of CD40 antibody upon encapsulation in pHe-triggered membrane-adhesive nanoliposomes.

Nanomedicine (Lond)

January 2025

Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.

Aim: To develop pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL) of CD40a to enhance anti-tumor activity in pancreatic cancer while reducing systemic toxicity.

Materials And Methods: A small library of nanoliposomes (NL) with various lipid compositions were synthesized to prepare pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL). Physical and functional characterization of pHTANL-CD40a was performed via dynamic light scattering (DLS), Transmission Electron Microscopy (TEM), confocal microscopy, and flow cytometry.

View Article and Find Full Text PDF

The clinical use of cancer vaccines is hampered by the low magnitude of induced T-cell responses and the need for repetitive antigen stimulation. Here, we demonstrate that liposomal formulations with incorporated STING agonists are optimally suited to deliver peptide antigens to dendritic cells in vivo and to activate dendritic cells in secondary lymphoid organs. One week after liposomal priming, systemic administration of peptides and a costimulatory agonistic CD40 antibody enables ultrarapid expansion of T cells, resulting in massive expansion of tumor-specific T cells in the peripheral blood two weeks after priming.

View Article and Find Full Text PDF

Elevated inflammatory reactions are a significant component in cerebral ischemia-reperfusion injury (CIRI). Activation of α7-Nicotinic Acetylcholine Receptor (α7nAChR) reduces stroke-induced inflammation in rats, but the anti-inflammatory pathway in microglia under CIRI condition remains unclear. This study employed qRT-PCR, protein assays, NanoString analysis, and bioinformatics to examine the effects of PNU282987 treatment (α7nAChR agonist) on BV2 microglial functional differentiation in oxygen-glucose deprivation/reoxygenation (OGDR) condition.

View Article and Find Full Text PDF

Design of a humanized CD40 agonist antibody with specific properties using AlphaFold2 and development of an anti-PD-L1/CD40 bispecific antibody for cancer immunotherapy.

Transl Oncol

December 2024

School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, PR China. Electronic address:

Bispecific antibodies (BsAbs) represent a promising strategy for cancer immunotherapy. Challenges in immunotherapy include inefficient early events in the immune response cycle, such as antigen presentation and T cell priming. Background stimulation of CD40 with agonistic antibodies is a promising strategy to enhance the therapeutic efficacy of immune checkpoint inhibitors (ICIs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!