Background: Dermal injection of chemically cross-linked hyaluronic acid (CL-HA) is a common procedure to smooth wrinkles and add fullness to the face. Due to its physical properties, CL-HA both fills space and exerts mechanical forces within the dermis. Dermal fibroblasts produce the collagen-rich extracellular matrix (ECM), which comprises the bulk of skin. Attachment to the ECM allows fibroblasts to achieve a stretched, morphology, which confers a functional phenotype that maintains collagen production. In aged/photoaged skin, collagen fibril fragmentation impairs fibroblast attachment, resulting in a collapsed morphology and reduced collagen production. This article describes investigations of the impact of CL-HA injection on fibroblast morphology and function in the aged/photoaged human skin.
Methods: Fifty-three subjects, age 70 years or older, received a single injection of saline (vehicle control) and CL-HA (0.5 ml each) in separate adjacent skin sites on photodamaged forearm or sun-protected buttock skin. Full-thickness punch biopsies were obtained from injected skin sites at various times and analyzed for molecular and cellular changes.
Results: Injected CL-HA forms discreet pockets that localize to areas of the dermis that contain fragmented, loosely organized collagen fibrils. These CL-HA pockets fill space and apply mechanical forces on adjacent ECM that induce stretching of fibroblasts. This stretching is associated with increased collagen gene expression and deposition of mature collagen fibril bundles, which resemble those observed in young skin.
Conclusions: CL-HA injected into aged/photoaged human dermis acts by both filling space and inducing production of collagen by dermal fibroblasts. Deposition of mature collagen, which remains in the skin for decades, likely confers long-term benefits. Reduced collagen production in aged/photoaged skin is an adaptive response of fibroblasts to ECM fragmentation, rather than inherent cellular aging mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/PRS.0000000000007620 | DOI Listing |
Adv Sci (Weinh)
January 2025
School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
3D disordered fibrous network structures (3D-DFNS), such as cytoskeletons, collagen matrices, and spider webs, exhibit remarkable material efficiency, lightweight properties, and mechanical adaptability. Despite their widespread in nature, the integration into engineered materials is limited by the lack of study on their complex architectures. This study addresses the challenge by investigating the structure-property relationships and stability of biomimetic 3D-DFNS using large datasets generated through procedural modeling, coarse-grained molecular dynamics simulations, and machine learning.
View Article and Find Full Text PDFFront Vet Sci
January 2025
Centre of Experimental and Clinical Regenerative Medicine, Small Animal Clinic, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia.
Eggshell membrane (ESM) is a rich source of bioactive compounds, including proteins, peptides, and antioxidants, contributing to its potential therapeutic benefits. These natural antioxidants might help neutralize reactive oxygen species (ROS) and modulate inflammatory responses, which are often linked with chondrocyte damage in osteoarthritis. In this study, we investigated the functional effects of ESM proteins on HO-induced oxidative stress in a neonatal canine chondrocytes.
View Article and Find Full Text PDFMethodsX
June 2025
Technological Insitute of Sonora, Ciudad Obregon, Sonora MX-85000, Mexico.
Electrospinning can be used to prepare membranes with characteristics for biomedical application. In this work, the electrospinning conditions for the fabrication of membranes based on polymers extracted from natural sources such as chitosan and collagen were optimized (injection flow, injection volume, distance from the collector to the neddle, needle size and voltage). Specifically, four formulations were prepared with pure chitosan and mixtures of collagen (purified or hydrolyzed) and agarose.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Department of Ophthalmology, The Future Medicine Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China.
Excessive fibrosis is the primary factor for the failure of glaucoma drainage device (GDD) implantation. Thus, strategies to suppress scar formation in GDD implantation are crucial. Although it is known that in implanted medical devices, microscale modification of the implant surface can modulate cell behavior and reduce the incidence of fibrosis, in the field of ophthalmic implants, especially the modification and effects of hydrogel micropatterns have rarely been reported.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China.
Objectives: Platelet concentrates (PCs), which are blood products that are abundant in platelets and growth factors, have become pivotal in treating maxillofacial tissue lesions due to their capacity for promoting bone and soft tissue recovery. This review will provide some recent progress of the use of platelet concentrates to treat lesions on maxillofacial tissues.
Subjects: We reviewed the mechanisms by which PCs promote wound healing and tissue recovery and summarized the application of PCs in the treatment of lesions on maxillofacial tissues, including medication-related osteonecrosis of the jaw, post-extraction wound healing, implant surgery, temporomandibular joint diseases, and periodontal tissue restoration.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!