Digital methods for process design, monitoring, and control can convert classical trial-and-error bioprocess development to a quantitative engineering approach. By interconnecting hardware, software, data, and humans currently untapped process optimization potential can be accessed. The key component within such a framework is a digital twin interacting with its physical process counterpart. In this chapter, we show how digital twin guided process development can be applied on an exemplary microbial cultivation process. The usage of digital twins is described along a typical process development cycle, ranging from early strain characterization to real-time control applications. Along an illustrative case study on microbial upstream bioprocessing, we emphasize that digital twins can integrate entire process development cycles if the digital twin itself and the underlying models are continuously adapted to newly available data. Therefore, the digital twin can be regarded as a powerful knowledge management tool and a decision support system for efficient process development. Its full potential can be deployed in a real-time environment where targeted control actions can further improve process performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/10_2020_149 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!