2D materials are attracting increasing attention in many strategic applications. In particular, ultra-thin non-layered oxides have been shown to outperform their 3D counter-parts in several health and energy applications, such as the removal of toxic carbon monoxide by low temperature oxidation and the development of high performance supercapacitors. The general reason for that is the increased surface-to-volume ratio, which maximizes exposure of active species and enhances exchange between the (limited) bulk and the surface. The challenge is to synthesize such 2D configurations of 3D oxides, which generally requires quite harsh multi-step, multi-reagent chemical processes. Here we show that natural graphite can be used as a templating matrix to grow non-stoichiometric 2D transition metal oxides. We focus on highly porous, highly reduced cobalt oxides grown from cobalt nitrate and sodium borohydride under sonication. Extensive characterization, including nitrogen physisorption, thermogravimetric analysis (TGA), scanning and transmission electron microscopy (SEM/TEM), X-ray diffraction (XRD), temperature programmed oxidation and reduction (TPO/TPR), Fourier transformed infrared (FTIR) and Raman spectroscopies, highlights the specific features of the 2D morphologies (nanosheets and nanofilms) obtained. For comparison, 3D morphologies of CoO spinel nanocrystallites are grown from stacked 2D cobalt phthalocyanine-graphene precursors upon controlled thermal oxidation. Finally, low temperature CO oxidation catalysis evidences the superior performance of the graphene-supported CoO-like cobalt oxide 2D nanosheets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9fd00110g | DOI Listing |
Sci Rep
January 2025
Obstetrics and Gynaecology Department, Faculty of Medicine, Minia University, Minia, Egypt.
Nanomedical applications have increased significantly. This work aimed to fabricate and characterize cobalt oxide nanoparticles (CoOnps) synthesized biologically via aqueous Alhagi maurorum extract and evaluate their cytotoxic and antimicrobial impacts. Green-synthesized CoOnps were prepared and analyzed using UV-Vis spectrophotometer UV-vis, Scanning electron microscopy (SEM), Transmission electron microscopy TEM, Energy dispersive X-ray analysis EDAX, Fourier transform infrared, FTIR, and X-ray diffraction (XRD).
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Basic Medicine, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan 750004, China. Electronic address:
Targeting the peculiarities of tumor tissue microenvironment different from normal tissue, such as lower pH and overexpression of hydrogen peroxide is the key to effective treatment. In this study, acid-responsive Z-scheme heterojunctions polyglycolated MoS/CoFeO (MoS = molybdenum disulfide, CoFeO = cobalt ferrite) was synthesized using a two-step hydrothermal method, designated as MSCO-PEG, guided by dual modes of photoacoustic imagine (PAI) and nuclear magnetic imaging (MRI). MSCO-PEG (PEG = polyethylene glycol) responded to the acidic environment of tumor tissues and overexpression of hydrogen peroxide to turn on multimodal synergistic treatment of tumor cells under near-infrared-II (NIR-II) illumination.
View Article and Find Full Text PDFDalton Trans
January 2025
Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China.
Incorporating non-electrochemically active elements (such as Zn and Mg) into the framework of active components can enhance structural stability, leading to improved cycling performance. However, limited research has been conducted on the impact of varying doping concentrations. In this study, we conducted a comprehensive analysis of how different levels of Mg doping in Co(OH) affect the supercapacitor performance.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Material Science Lab, Annamalai University, Annamalai Nagar, Tamil Nadu 608002, India.
The urgent need to address escalating environmental pollution and energy management challenges has underscored the importance of developing efficient, cost-effective, and multifunctional electrocatalysts. To address these issues, we developed an eco-friendly, cost-effective, and multifunctional electrocatalyst a solvothermal synthesis approach. Due to the merits of the ideal synthesis procedure, the FeCoHS@NF electrocatalyst exhibited multifunctional activities, like OER, HER, OWS, UOR, OUS, and overall alkaline seawater splitting, with required potentials of 1.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 435 Skirkanich Hall, Philadelphia, Pennsylvania 19104, United States.
Nanoparticles have gained attention as drug delivery vehicles for cancer treatment, but often struggle with poor tumor accumulation and penetration. Single external magnets can enhance magnetic nanoparticle delivery but are limited to superficial tumors due to the rapid decline in the magnetic field strength with distance. We previously showed that a 2-magnet device could extend targeting to greater tissue depths.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!