AI Article Synopsis

  • Nucleic acid detection methods are essential for diagnosing diseases, especially during the COVID-19 pandemic, but existing techniques have limitations in speed and accuracy.
  • The innovative CRISPR-Cas9-assisted DNA detection (CADD) method was developed to overcome these challenges by using specific guide RNAs and a rapid incubation process at room temperature.
  • This new technique can quickly detect various DNA samples, including those from high-risk human papillomaviruses in clinical samples, and can yield results in just 30 minutes, making it suitable for on-the-spot testing.

Article Abstract

Nucleic acid detection techniques are always critical to diagnosis, especially in the background of the present coronavirus disease 2019 pandemic. Simple and rapid detection techniques with high sensitivity and specificity are always urgently needed. However, current nucleic acid detection techniques are still limited by traditional amplification and hybridization. To overcome this limitation, here we developed CRISPR-Cas9-assisted DNA detection (CADD). In this detection, a DNA sample is incubated with a pair of capture single guide RNAs (sgRNAs; sgRNAa and sgRNAb) specific to a target DNA, dCas9, a signal readout-related probe, and an oligo-coated solid support beads or microplate at room temperature (RT) for 15 min. During this incubation, the dCas9-sgRNA-DNA complex is formed and captured on solid support by the capture sequence of sgRNAa, and the signal readout-related probe is captured by the capture sequence of sgRNAb. Finally, the detection result is reported by a fluorescent or colorimetric signal readout. This detection was verified by detecting DNA of bacteria, cancer cells, and viruses. In particular, by designing a set of sgRNAs specific to 15 high-risk human papillomaviruses (HPVs), the HPV infection in 64 clinical cervical samples was successfully detected by the method. All detections can be finished in 30 min at RT. This detection holds promise for rapid on-the-spot detection or point-of-care testing.

Download full-text PDF

Source
http://dx.doi.org/10.1089/crispr.2020.0041DOI Listing

Publication Analysis

Top Keywords

dna detection
12
detection techniques
12
detection
11
nucleic acid
8
acid detection
8
signal readout-related
8
readout-related probe
8
solid support
8
capture sequence
8
dna
5

Similar Publications

Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.

View Article and Find Full Text PDF

Prognostic value of carcinoembryonic antigen in colorectal adenocarcinoma: expanding hypotheses into clinical practice.

Clin Exp Med

January 2025

Liver & Peritonectomy Unit, Department of Surgery, St George Hospital, Pitney Building, Short Street, Kogarah, NSW, 2217, Australia.

Purpose: This study seeks to resolve a fundamental question in oncology: Why do appendiceal and colorectal adenocarcinomas exhibit distinct liver metastasis rates? Building on our prior hypothesis published in the British Journal of Surgery, our institution has investigated potential DNA mutations within the carcinoembryonic antigen-related cell adhesion molecule (CEACAM5) gene's Pro-Glu-Leu-Pro-Lys (PELPK) motif to evaluate its role as a biomarker for liver metastasis risk.

Methods: Partnering with the Australian Genome Research Facility, the PELPK motif of CEACAM5 was analysed in colorectal and appendiceal adenocarcinomas to detect DNA mutations associated with liver metastasis. Additionally, our institution performed the COPPER trial to assess carcinoembryonic antigen (CEA) levels in portal versus peripheral blood in patients with appendiceal adenocarcinoma and a systematic review and meta-analysis of 136 studies on CEA's prognostic significance among patients with colorectal and appendiceal adenocarcinoma.

View Article and Find Full Text PDF

Purpose: The aim of the present study was to establish a SYBR Green-based real-time PCR assay for detection of the Nc5 segment from the Neospora caninum genome.

Methods: The oligonucleotides sequences targeting the Nc5 gene previously reported and designed in-house were validated. Two Primer sets were evaluated and tested in four different combinations.

View Article and Find Full Text PDF

A molecular beacon is an oligonucleotide hybridization probe that can report the presence of specific nucleic acids in homogeneous solutions. Using an aptamer has allowed an aptamer-based molecular beacon-aptamer beacon to be developed, which has shown advantages of simplicity, rapidity, and sensitivity in imaging and sensing non-nucleic acid substances. However, due to requirement for a deliberate DNA hairpin structure for the preparation of a molecular beacon, not any given aptamer is suitable for designing an aptamer beacon probe.

View Article and Find Full Text PDF

Identifying transitional states is crucial for understanding protein conformational changes that underlie numerous biological processes. Markov state models (MSMs), built from Molecular Dynamics (MD) simulations, capture these dynamics through transitions among metastable conformational states, and have demonstrated success in studying protein conformational changes. However, MSMs face challenges in identifying transition states, as they partition MD conformations into discrete metastable states (or free energy minima), lacking description of transition states located at the free energy barriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!