A wide variety of colloidal delivery systems, including polymeric nanoparticles, metal colloids, liposomes, and microemulsions have been reported to enhance the delivery of therapeutic agents across the nasal mucosa. The mechanisms involved in the uptake of these nanomaterials, especially ultrafine nanomaterials (diameters < 20 nm) through the nasal mucosa are not well understood. Fluorescent quantum dots (QDs) were used to investigate the uptake of ultrafine nanoparticles by bovine respiratory and olfactory mucosal tissues following in vitro exposure, and an inductively coupled plasma optical emission spectroscopy method was developed to quantify the amount of QDs localized within the tissues. QDs do not biodegrade or release their core materials and, as a result, this method allowed for the direct quantification of the nanoparticles themselves, rather than the measurement of a potentially dissociated drug or label. The results demonstrated that carboxylate-modified QDs (COOH-QDs) showed ∼2.5-fold greater accumulation in the epithelial and submucosal regions of olfactory tissues compared to that in respiratory tissues. Endocytic inhibitory studies showed that clathrin-dependent endocytosis, macropinocytosis, and caveolae-dependent endocytic process are all involved in the uptake of COOH-QDs into the respiratory tissues. In olfactory tissues, clathrin-dependent endocytosis is the major endocytic pathway involved in the uptake of COOH-QDs. Additional energy-independent pathways also appeared to allow the transfer of COOH-QDs within the olfactory mucosa. When polyethylene glycol-modified QDs known as PEGylated QDs (PEG-QDs) of similar size, ∼15 nm, were investigated, no nanoparticles were detected in the tissues suggesting that the PEG corona limits the interactions with endocytic and other uptake processes in the nasal epithelium. The capacity for nanoparticle uptake observed in the nasal mucosa, along with the ability of significant numbers of nanoparticles to enter the olfactory tissues using nonenergy-dependent pathways show that the pathways for ultrafine nanoparticle uptake in the nasal tissues have both drug delivery and toxicologic consequences. This places an increased importance on the careful selection of nanoparticle components and drugs intended for intranasal administration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.molpharmaceut.0c01074 | DOI Listing |
Heliyon
January 2025
Nasal Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
Background: At present, the treatment for allergic rhinitis (AR) is only limited to symptom relief, and AR is not able be cured. It is important to find new therapeutic regimens for AR.
Objective: To explore the effect of adipose mesenchymal stem cell-derived exosomes (AMSC-exos) on AR in mice.
Int Forum Allergy Rhinol
January 2025
Division of Division of Rhinology & Skull Base Surgery Department of Otolaryngology, University of Florida, Gainesville, Florida, USA.
Rationale: Smoking has been shown to be associated with circulating deficiencies in 25(OH)D3 and reduced sinonasal tissue levels of the active form of vitamin D, 1,25(OH)2D3. Given vitamin D's ability to reduce inflammation, we sought to examine if intranasal (IN) delivery of calcitriol [clinical analog of 1,25(OH)2D3] could reduce inflammation and improve disease severity in a murine model of chronic cigarette smoke-induced sinonasal inflammation (CS-SI).
Methods: Mice were exposed to CS 5 h/day, 5 days/week for 9 months, and then began IN calcitriol three times per week for 4 weeks.
GMS Hyg Infect Control
December 2024
Department of ENT, Sree Balaji Medical college Chromepet, Chennai, Tamil Nadu, India.
Actinomycosis is an endogenous bacterial infection caused by . This bacterium reside on the mucosa of oral cavity, tonsils, and genitourinary tract. Any insult such as trauma, surgery, or foreign body disrupts the mucosal barrier and gives entry to the underlying tissue to cause disease.
View Article and Find Full Text PDFImmunol Res
January 2025
Department of Otolaryngology, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, 266033, Shandong, People's Republic of China.
Baicalein, one of the major active flavonoids found in Scutellaria baicalensis, has been revealed to exhibit potent anti-inflammatory properties in allergic airway inflammation. This study aimed to explore the role of baicalein and its relevant mechanism in the treatment of allergic rhinitis (AR). The bioinformatics tools were used to predict the targets of baicalein and AR-related genes.
View Article and Find Full Text PDFPrimary ciliary dyskinesia (PCD, OMIM 244400) is a rare genetic disorder that affects motile cilia and is characterised by impaired mucociliary clearance of the airway epithelium, which results in chronic upper and lower airway infections. While short-read next-generation sequencing technology has been used for the genetic testing of PCD, its effectiveness is limited in identifying variants in the gene because of the nearly identical pseudogene As we confirmed that the gene was not expressed in airway cells, we obtained nasal mucosa biopsy specimens for total RNA sequencing (RNA-seq) with library enrichment using exome oligos. Among the 34 nasal samples from patients suspected of having PCD, three aberrant splicing patterns in were identified in two samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!