Bacteria present in probiotics, particularly the common Lactobacillus and Bifidobacterium microbes, have been found to induce anti-cancer action by enhancing cancer cell apoptosis and protecting against oxidative stress. Probiotics supplements also decrease the cancer-producing microorganism Fusobacterium. Studies have demonstrated that gut microbiota modifies the effect of chemo/radiation therapy. Gut microbes not only enhance the action of chemotherapy drugs but also reduce the side effects of these medications. Additionally, gut microbes reduce immunotherapy toxicity, in particular, the presence of Bacteroidetes or Bifidobacterium decreases the development of colitis by ipilimumab therapy. Probiotics supplements containing Bifidobacterium also reduce chemotherapy-induced mucositis and radiation-induced diarrhea. This review focused on elucidating the mechanism behind the anti-cancer action of Bifidobacterium species. Available studies have revealed Bifidobacterium species decrease cancer cell proliferation via the inhibition of growth factor signaling as well as inducing mitochondrial-mediated apoptosis. Moreover, Bifidobacterium species reduce the adverse effects of chemo/immuno/radiation therapy by inhibiting proinflammatory cytokines. Further clinical studies are needed to identify the powerful and suitable Bifidobacterium strain for the development of adjuvant therapy to support chemo/immuno/radiation therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbcan.2020.188494 | DOI Listing |
Sci Rep
January 2025
Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-0012, Japan.
Lactones play crucial roles in various fields, such as pharmaceuticals, food, and materials science, due to their unique structures and diverse biological activities. However, certain lactones are difficult to obtain in large quantities from natural sources, necessitating their synthesis to study their properties and potential. In this study, we investigated the photocatalytic conversion of D-fructose, a biomass-derived and naturally abundant sugar, using a TiO photocatalyst under light irradiation in ambient conditions.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland.
: Depression often coexists with anemia, potentially sharing common pathways, highlighting the need for treatments addressing both conditions simultaneously. This study evaluated the effect of probiotics on red blood cell (RBC) parameters in adults with depressive disorder. We hypothesized that probiotics would positively influence RBC parameters, potentially modulated by baseline inflammation or dietary intake, with improved RBC function correlating with better antidepressant outcomes.
View Article and Find Full Text PDFJ Clin Med
December 2024
Dermatology Department, Hospital Vital Álvarez Buylla, 33611 Mieres, Spain.
Research on the relationship between gut microbiota (GM) and atopic dermatitis (AD) has seen a growing interest in recent years. The aim of this systematic review was to determine whether differences exist between the GM of adults with AD and that of healthy adults (gut dysbiosis). We conducted a systematic review based on the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses).
View Article and Find Full Text PDFJ Clin Med
December 2024
Health, Nutrition & Care, DSM-Firmenich, 4303 Kaiseraugst, Switzerland.
Biotics are increasingly being used in the treatment of irritable bowel syndrome (IBS). This study aimed to assess the efficacy and safety of a mixture of microencapsulated sodium butyrate, probiotics ( DSM 26357, DSM 32418, DSM 32946, DSM 32403, and DSM 32269), and short-chain fructooligosaccharides (scFOSs) in IBS patients. This was a randomized, double-blind, placebo-controlled trial involving 120 adult participants with IBS.
View Article and Find Full Text PDFNutrients
December 2024
Cryptobiotix, Technologiepark-Zwijnaarde 82, 9052 Gent, Belgium.
Background: The human gut microbiota develops in concordance with its host over a lifetime, resulting in age-related shifts in community structure and metabolic function. Little is known about whether these changes impact the community's response to microbiome-targeted therapeutics. Providing critical information on this subject, faecal microbiomes of subjects from six age groups, spanning from infancy to 70-year-old adults (n = six per age group) were harvested.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!