Diosgenin (DG), a steroidal saponin, is mainly found in yam tubers. DG and its derivatives displayed significant pharmacological activities against inflammatory, hyperlipidemia, and various cancers. DG was selected to modify the cancer chemotherapeutic agent cytarabine (Ara-C) due to its anti-tumor activities as well as lipophilicity. After characterization, the biomembrane affinity and the kinetic thermal processes of the obtained DG-Ara-C conjugate were evaluated by differential scanning calorimetry (DSC). Thin hydration method with sonication was applied to prepare the DG-Ara-C liposomes without cholesterol since the DG moiety has the similar basic structure with cholesterol with more advantages. Dynamic Light Scattering (DLS) analysis and cytotoxic analysis were employed to characterize the DG-Ara-C liposomes and investigate their biological activities, respectively. The results indicated that DG changed the biomembrane affinity of Ara-C and successfully replaced the cholesterol during the liposome preparation. The DG-Ara-C liposomes have an average particle size of around 116 nm with a narrow size distribution and revealed better anti-cancer activity against leukemia cells and solid tumor cells than that of free DG or Ara-C. Therefore, it can be concluded that DG displayed the potential application as an anti-cancer drug carrier to improve the bio-activities, since DG counted for a critical component in modulating the biomembrane affinity, preparation of liposome, and release of hydrophilic Ara-C from lipid vesicles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fct.2020.111920 | DOI Listing |
Sci Rep
December 2024
College of Physical Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
Nanomaterial-biomembrane interactions constitute a critical biological process in assessing the toxicity of such materials in theoretical studies. However, many investigations simplify these interactions by using membrane models containing only one or a few lipid types, deviating significantly from the complexity of real membrane compositions. In particular, cholesterol, a ubiquitous lipid essential for regulating membrane fluidity and closely linked to various diseases, is often overlooked.
View Article and Find Full Text PDFCarbohydr Res
January 2025
Graduate School of Sustainability Science, Department of Agricultural Science, Tottori University, Tottori, 680-8553, Japan; Department of Agricultural, life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan; The United Graduate School of Agricultural Sciences, Tottori University, Tottori, 680-8553, Japan. Electronic address:
Muscle tissue is stabilized by the strong interaction between laminin and matriglycan. Matriglycan is a polysaccharide composed of the repeating disaccharide, -3Xylα1-3GlcAβ1-, and is a pivotal part of the core M3 O-mannosyl glycan. Patients with muscular dystrophy cannot synthesize matriglycan or the core M3 O-mannosyl glycan due to a defect in or the lack of glycosyltransferases owing to glycan synthesis.
View Article and Find Full Text PDFMolecules
October 2024
REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
The lipophilization of polyphenols (phenolipids) may increase their affinity for membranes, leading to better antioxidant protection. Cholesteryl esters of caffeic, dihydrocaffeic, homoprotocatechuic and protocatechuic acids were synthetized in a one-step procedure with good to excellent yields of ~50-95%. After evaluation of their radical scavenging capacity by the DPPH method and establishing the anodic peak potential by cyclic voltammetry, their antioxidant capacity against AAPH-induced oxidative stress in soybean PC liposomes was determined.
View Article and Find Full Text PDFJ Mater Chem B
November 2024
Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
Antimicrobial-resistant bacteria pose a significant threat to humans, prompting extensive research into developing new antimicrobial peptides (AMPs). The biomembrane is the first barrier of a biological cell, hence, comprehending the interaction and self-assembly of AMPs in and around such membranes is of great importance. In the present study, several biophysical techniques have been applied to explore the self-assembly of ubiquicidin (29-41), an archetypical AMP, in and around the phospholipid monolayers formed at air-water interface.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
January 2025
Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, via Amendola 165/A, 70126 Bari, Italy. Electronic address:
LAT1 (SLC7A5) catalyzes an antiport reaction of amino acids with specificity towards the essential ones. It is mainly expressed at the Blood Brain Barrier and placenta barriers, but it becomes over-expressed in virtually all human cancers even if originating from tissues with lower expression levels. The antiport reaction of LAT1 is crucial at the BBB since its inherited loss causes Autism Spectrum Disorder.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!