Treatment of Experimental Choroidal Neovascularization via RUNX1 Inhibition.

Am J Pathol

Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts. Electronic address:

Published: March 2021

Choroidal neovascularization (CNV) is a prevalent cause of vision loss in patients with age-related macular degeneration. Runt-related transcription factor 1 (RUNX1) has been identified as an important mediator of aberrant retinal angiogenesis in proliferative diabetic retinopathy and its modulation has proven to be effective in curbing pathologic angiogenesis in experimental oxygen-induced retinopathy. However, its role in CNV remains to be elucidated. This study demonstrates RUNX1 expression in critical cell types involved in a laser-induced model of CNV in mice. Furthermore, the preclinical efficacy of Ro5-3335, a small molecule inhibitor of RUNX1, in experimental CNV is reported. RUNX1 inhibitor Ro5-3335, aflibercept-an FDA-approved vascular endothelial growth factor (VEGF) inhibitor, or a combination of both, were administered by intravitreal injection immediately after laser injury. The CNV area of choroidal flatmounts was evaluated by immunostaining with isolectin B4, and vascular permeability was analyzed by fluorescein angiography. A single intravitreal injection of Ro5-3335 significantly decreased the CNV area 7 days after laser injury, and when combined with aflibercept, reduced vascular leakage more effectively than aflibercept alone. These data suggest that RUNX1 inhibition alone or in combination with anti-VEGF drugs may be a new therapy upon further clinical validation for patients with neovascular age-related macular degeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931615PMC
http://dx.doi.org/10.1016/j.ajpath.2020.12.005DOI Listing

Publication Analysis

Top Keywords

choroidal neovascularization
8
runx1 inhibition
8
age-related macular
8
macular degeneration
8
intravitreal injection
8
laser injury
8
cnv area
8
runx1
6
cnv
6
treatment experimental
4

Similar Publications

Wearable electrodriven switch actively delivers macromolecular drugs to fundus in non-invasive and controllable manners.

Nat Commun

January 2025

Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, China.

Current treatments for fundus disorders, such as intravitreal injections, pose risks, including infection and retinal detachment, and are limited in their ability to deliver macromolecular drugs across the blood‒retinal barrier. Although non-invasive methods are safer, their delivery efficiency remains suboptimal (<5%). We have developed a wearable electrodriven switch (WES) that improves the non-invasive delivery of macromolecules to the fundus.

View Article and Find Full Text PDF

This study used ultra-widefield swept-source optical coherence tomography angiography (UWF SS-OCTA) to analyze and compare choroidal blood flow and anatomical changes in eyes affected by central serous chorioretinopathy (CSC), pachychoroid neovasculopathy (PNV), and uncomplicated pachychoroid (UCP). The findings revealed distribution patterns of vortex veins across the three patient groups and provided initial findings insights into the origin of choroidal neovascularization (CNV) in PNV. A total of 44 patients with CSC, 38 with PNV, and 46 with UCP were included in the analysis.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration (nAMD), characterized by choroidal neovascularization (CNV), is one of the leading causes of severe visual impairment and irreversible vision loss around the world. Subretinal fibrosis (SRF) contributes to the incomplete response to anti-vascular endothelial growth factor (VEGF) treatment and is one of the main reasons for long-term poor visual outcomes in nAMD. Reducing SRF is urgently needed in the anti-VEGF era.

View Article and Find Full Text PDF

To present a pediatric patient with a unique configuration of torpedo maculopathy complicated by macular choroidal neovascularization (CNV). A single case was retrospectively reviewed. An 8-year-old male child presented with decreased vision in the left eye and was found to have 2 distinct torpedo maculopathy lesions, 1 a smaller hypopigmented lesion in the temporal parafovea and the other a larger hyperpigmented comet-shaped lesion in the temporal periphery.

View Article and Find Full Text PDF

Efficacy of Anti-Vascular Endothelial Growth Factor (VEGF) Therapy for Age-Related Macular Degeneration.

Cureus

November 2024

General Medicine, Barts Health National Health Service (NHS) Trust, London, GBR.

Anti-vascular endothelial growth factor (VEGF) drugs are used for various diseases with abnormal proliferation of blood vessels. The use of these drugs in wet age-related macular degeneration (AMD) has proven to be highly effective. Various factors contribute to the efficacy of these drugs in different settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!